Branch data Line data Source code
1 : : #include "Python.h"
2 : : #include "pycore_pymem.h" // _PyTraceMalloc_Config
3 : : #include "pycore_code.h" // stats
4 : :
5 : : #include <stdbool.h>
6 : : #include <stdlib.h> // malloc()
7 : :
8 : :
9 : : /* Defined in tracemalloc.c */
10 : : extern void _PyMem_DumpTraceback(int fd, const void *ptr);
11 : :
12 : :
13 : : /* Python's malloc wrappers (see pymem.h) */
14 : :
15 : : #undef uint
16 : : #define uint unsigned int /* assuming >= 16 bits */
17 : :
18 : : /* Forward declaration */
19 : : static void* _PyMem_DebugRawMalloc(void *ctx, size_t size);
20 : : static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);
21 : : static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);
22 : : static void _PyMem_DebugRawFree(void *ctx, void *ptr);
23 : :
24 : : static void* _PyMem_DebugMalloc(void *ctx, size_t size);
25 : : static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);
26 : : static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);
27 : : static void _PyMem_DebugFree(void *ctx, void *p);
28 : :
29 : : static void _PyObject_DebugDumpAddress(const void *p);
30 : : static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p);
31 : :
32 : : static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain);
33 : :
34 : : #if defined(__has_feature) /* Clang */
35 : : # if __has_feature(address_sanitizer) /* is ASAN enabled? */
36 : : # define _Py_NO_SANITIZE_ADDRESS \
37 : : __attribute__((no_sanitize("address")))
38 : : # endif
39 : : # if __has_feature(thread_sanitizer) /* is TSAN enabled? */
40 : : # define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
41 : : # endif
42 : : # if __has_feature(memory_sanitizer) /* is MSAN enabled? */
43 : : # define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
44 : : # endif
45 : : #elif defined(__GNUC__)
46 : : # if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */
47 : : # define _Py_NO_SANITIZE_ADDRESS \
48 : : __attribute__((no_sanitize_address))
49 : : # endif
50 : : // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro
51 : : // is provided only since GCC 7.
52 : : # if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1)
53 : : # define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
54 : : # endif
55 : : #endif
56 : :
57 : : #ifndef _Py_NO_SANITIZE_ADDRESS
58 : : # define _Py_NO_SANITIZE_ADDRESS
59 : : #endif
60 : : #ifndef _Py_NO_SANITIZE_THREAD
61 : : # define _Py_NO_SANITIZE_THREAD
62 : : #endif
63 : : #ifndef _Py_NO_SANITIZE_MEMORY
64 : : # define _Py_NO_SANITIZE_MEMORY
65 : : #endif
66 : :
67 : : #ifdef WITH_PYMALLOC
68 : :
69 : : #ifdef MS_WINDOWS
70 : : # include <windows.h>
71 : : #elif defined(HAVE_MMAP)
72 : : # include <sys/mman.h>
73 : : # ifdef MAP_ANONYMOUS
74 : : # define ARENAS_USE_MMAP
75 : : # endif
76 : : #endif
77 : :
78 : : /* Forward declaration */
79 : : static void* _PyObject_Malloc(void *ctx, size_t size);
80 : : static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
81 : : static void _PyObject_Free(void *ctx, void *p);
82 : : static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
83 : : #endif
84 : :
85 : :
86 : : /* bpo-35053: Declare tracemalloc configuration here rather than
87 : : Modules/_tracemalloc.c because _tracemalloc can be compiled as dynamic
88 : : library, whereas _Py_NewReference() requires it. */
89 : : struct _PyTraceMalloc_Config _Py_tracemalloc_config = _PyTraceMalloc_Config_INIT;
90 : :
91 : :
92 : : static void *
93 : 29135442 : _PyMem_RawMalloc(void *Py_UNUSED(ctx), size_t size)
94 : : {
95 : : /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
96 : : for malloc(0), which would be treated as an error. Some platforms would
97 : : return a pointer with no memory behind it, which would break pymalloc.
98 : : To solve these problems, allocate an extra byte. */
99 [ + + ]: 29135442 : if (size == 0)
100 : 2819956 : size = 1;
101 : 29135442 : return malloc(size);
102 : : }
103 : :
104 : : static void *
105 : 3142765 : _PyMem_RawCalloc(void *Py_UNUSED(ctx), size_t nelem, size_t elsize)
106 : : {
107 : : /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
108 : : for calloc(0, 0), which would be treated as an error. Some platforms
109 : : would return a pointer with no memory behind it, which would break
110 : : pymalloc. To solve these problems, allocate an extra byte. */
111 [ + + + + ]: 3142765 : if (nelem == 0 || elsize == 0) {
112 : 124 : nelem = 1;
113 : 124 : elsize = 1;
114 : : }
115 : 3142765 : return calloc(nelem, elsize);
116 : : }
117 : :
118 : : static void *
119 : 5283739 : _PyMem_RawRealloc(void *Py_UNUSED(ctx), void *ptr, size_t size)
120 : : {
121 [ + + ]: 5283739 : if (size == 0)
122 : 75075 : size = 1;
123 : 5283739 : return realloc(ptr, size);
124 : : }
125 : :
126 : : static void
127 : 32822397 : _PyMem_RawFree(void *Py_UNUSED(ctx), void *ptr)
128 : : {
129 : 32822397 : free(ptr);
130 : 32822397 : }
131 : :
132 : :
133 : : #ifdef MS_WINDOWS
134 : : static void *
135 : : _PyObject_ArenaVirtualAlloc(void *Py_UNUSED(ctx), size_t size)
136 : : {
137 : : return VirtualAlloc(NULL, size,
138 : : MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
139 : : }
140 : :
141 : : static void
142 : : _PyObject_ArenaVirtualFree(void *Py_UNUSED(ctx), void *ptr,
143 : : size_t Py_UNUSED(size))
144 : : {
145 : : VirtualFree(ptr, 0, MEM_RELEASE);
146 : : }
147 : :
148 : : #elif defined(ARENAS_USE_MMAP)
149 : : static void *
150 : 40715 : _PyObject_ArenaMmap(void *Py_UNUSED(ctx), size_t size)
151 : : {
152 : : void *ptr;
153 : 40715 : ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
154 : : MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
155 [ - + ]: 40715 : if (ptr == MAP_FAILED)
156 : 0 : return NULL;
157 : : assert(ptr != NULL);
158 : 40715 : return ptr;
159 : : }
160 : :
161 : : static void
162 : 29042 : _PyObject_ArenaMunmap(void *Py_UNUSED(ctx), void *ptr, size_t size)
163 : : {
164 : 29042 : munmap(ptr, size);
165 : 29042 : }
166 : :
167 : : #else
168 : : static void *
169 : : _PyObject_ArenaMalloc(void *Py_UNUSED(ctx), size_t size)
170 : : {
171 : : return malloc(size);
172 : : }
173 : :
174 : : static void
175 : : _PyObject_ArenaFree(void *Py_UNUSED(ctx), void *ptr, size_t Py_UNUSED(size))
176 : : {
177 : : free(ptr);
178 : : }
179 : : #endif
180 : :
181 : : #define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree}
182 : : #ifdef WITH_PYMALLOC
183 : : # define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free}
184 : : #endif
185 : :
186 : : #define PYRAW_ALLOC MALLOC_ALLOC
187 : : #ifdef WITH_PYMALLOC
188 : : # define PYOBJ_ALLOC PYMALLOC_ALLOC
189 : : #else
190 : : # define PYOBJ_ALLOC MALLOC_ALLOC
191 : : #endif
192 : : #define PYMEM_ALLOC PYOBJ_ALLOC
193 : :
194 : : typedef struct {
195 : : /* We tag each block with an API ID in order to tag API violations */
196 : : char api_id;
197 : : PyMemAllocatorEx alloc;
198 : : } debug_alloc_api_t;
199 : : static struct {
200 : : debug_alloc_api_t raw;
201 : : debug_alloc_api_t mem;
202 : : debug_alloc_api_t obj;
203 : : } _PyMem_Debug = {
204 : : {'r', PYRAW_ALLOC},
205 : : {'m', PYMEM_ALLOC},
206 : : {'o', PYOBJ_ALLOC}
207 : : };
208 : :
209 : : #define PYDBGRAW_ALLOC \
210 : : {&_PyMem_Debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree}
211 : : #define PYDBGMEM_ALLOC \
212 : : {&_PyMem_Debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
213 : : #define PYDBGOBJ_ALLOC \
214 : : {&_PyMem_Debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
215 : :
216 : : #ifdef Py_DEBUG
217 : : static PyMemAllocatorEx _PyMem_Raw = PYDBGRAW_ALLOC;
218 : : static PyMemAllocatorEx _PyMem = PYDBGMEM_ALLOC;
219 : : static PyMemAllocatorEx _PyObject = PYDBGOBJ_ALLOC;
220 : : #else
221 : : static PyMemAllocatorEx _PyMem_Raw = PYRAW_ALLOC;
222 : : static PyMemAllocatorEx _PyMem = PYMEM_ALLOC;
223 : : static PyMemAllocatorEx _PyObject = PYOBJ_ALLOC;
224 : : #endif
225 : :
226 : :
227 : : static int
228 : 34951 : pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug,
229 : : PyMemAllocatorEx *old_alloc)
230 : : {
231 [ + + ]: 34951 : if (old_alloc != NULL) {
232 : 34849 : PyMem_GetAllocator(domain, old_alloc);
233 : : }
234 : :
235 : :
236 : : PyMemAllocatorEx new_alloc;
237 [ + + + - ]: 34951 : switch(domain)
238 : : {
239 : 34883 : case PYMEM_DOMAIN_RAW:
240 : 34883 : new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC;
241 : 34883 : break;
242 : 34 : case PYMEM_DOMAIN_MEM:
243 : 34 : new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC;
244 : 34 : break;
245 : 34 : case PYMEM_DOMAIN_OBJ:
246 : 34 : new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC;
247 : 34 : break;
248 : 0 : default:
249 : : /* unknown domain */
250 : 0 : return -1;
251 : : }
252 : 34951 : PyMem_SetAllocator(domain, &new_alloc);
253 [ + + ]: 34951 : if (debug) {
254 : 102 : _PyMem_SetupDebugHooksDomain(domain);
255 : : }
256 : 34951 : return 0;
257 : : }
258 : :
259 : :
260 : : int
261 : 34849 : _PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain,
262 : : PyMemAllocatorEx *old_alloc)
263 : : {
264 : : #ifdef Py_DEBUG
265 : : const int debug = 1;
266 : : #else
267 : 34849 : const int debug = 0;
268 : : #endif
269 : 34849 : return pymem_set_default_allocator(domain, debug, old_alloc);
270 : : }
271 : :
272 : :
273 : : int
274 : 11 : _PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator)
275 : : {
276 [ + - - + ]: 11 : if (name == NULL || *name == '\0') {
277 : : /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
278 : : nameions): use default memory allocators */
279 : 0 : *allocator = PYMEM_ALLOCATOR_DEFAULT;
280 : : }
281 [ - + ]: 11 : else if (strcmp(name, "default") == 0) {
282 : 0 : *allocator = PYMEM_ALLOCATOR_DEFAULT;
283 : : }
284 [ + + ]: 11 : else if (strcmp(name, "debug") == 0) {
285 : 1 : *allocator = PYMEM_ALLOCATOR_DEBUG;
286 : : }
287 : : #ifdef WITH_PYMALLOC
288 [ + + ]: 10 : else if (strcmp(name, "pymalloc") == 0) {
289 : 1 : *allocator = PYMEM_ALLOCATOR_PYMALLOC;
290 : : }
291 [ + + ]: 9 : else if (strcmp(name, "pymalloc_debug") == 0) {
292 : 1 : *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG;
293 : : }
294 : : #endif
295 [ + + ]: 8 : else if (strcmp(name, "malloc") == 0) {
296 : 5 : *allocator = PYMEM_ALLOCATOR_MALLOC;
297 : : }
298 [ + - ]: 3 : else if (strcmp(name, "malloc_debug") == 0) {
299 : 3 : *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG;
300 : : }
301 : : else {
302 : : /* unknown allocator */
303 : 0 : return -1;
304 : : }
305 : 11 : return 0;
306 : : }
307 : :
308 : :
309 : : int
310 : 44 : _PyMem_SetupAllocators(PyMemAllocatorName allocator)
311 : : {
312 [ - - + + : 44 : switch (allocator) {
+ - ]
313 : 0 : case PYMEM_ALLOCATOR_NOT_SET:
314 : : /* do nothing */
315 : 0 : break;
316 : :
317 : 0 : case PYMEM_ALLOCATOR_DEFAULT:
318 : 0 : (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL);
319 : 0 : (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL);
320 : 0 : (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL);
321 : 0 : break;
322 : :
323 : 34 : case PYMEM_ALLOCATOR_DEBUG:
324 : 34 : (void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL);
325 : 34 : (void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL);
326 : 34 : (void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL);
327 : 34 : break;
328 : :
329 : : #ifdef WITH_PYMALLOC
330 : 2 : case PYMEM_ALLOCATOR_PYMALLOC:
331 : : case PYMEM_ALLOCATOR_PYMALLOC_DEBUG:
332 : : {
333 : 2 : PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
334 : 2 : PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
335 : :
336 : 2 : PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
337 : 2 : PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc);
338 : 2 : PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc);
339 : :
340 [ + + ]: 2 : if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) {
341 : 1 : PyMem_SetupDebugHooks();
342 : : }
343 : 2 : break;
344 : : }
345 : : #endif
346 : :
347 : 8 : case PYMEM_ALLOCATOR_MALLOC:
348 : : case PYMEM_ALLOCATOR_MALLOC_DEBUG:
349 : : {
350 : 8 : PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
351 : 8 : PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
352 : 8 : PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc);
353 : 8 : PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc);
354 : :
355 [ + + ]: 8 : if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) {
356 : 3 : PyMem_SetupDebugHooks();
357 : : }
358 : 8 : break;
359 : : }
360 : :
361 : 0 : default:
362 : : /* unknown allocator */
363 : 0 : return -1;
364 : : }
365 : 44 : return 0;
366 : : }
367 : :
368 : :
369 : : static int
370 : 56 : pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b)
371 : : {
372 : 56 : return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0);
373 : : }
374 : :
375 : :
376 : : const char*
377 : 8 : _PyMem_GetCurrentAllocatorName(void)
378 : : {
379 : 8 : PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
380 : : #ifdef WITH_PYMALLOC
381 : 8 : PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
382 : : #endif
383 : :
384 [ + + + + ]: 12 : if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
385 [ + - ]: 5 : pymemallocator_eq(&_PyMem, &malloc_alloc) &&
386 : 1 : pymemallocator_eq(&_PyObject, &malloc_alloc))
387 : : {
388 : 1 : return "malloc";
389 : : }
390 : : #ifdef WITH_PYMALLOC
391 [ + + + - ]: 10 : if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
392 [ + - ]: 6 : pymemallocator_eq(&_PyMem, &pymalloc) &&
393 : 3 : pymemallocator_eq(&_PyObject, &pymalloc))
394 : : {
395 : 3 : return "pymalloc";
396 : : }
397 : : #endif
398 : :
399 : 4 : PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC;
400 : 4 : PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC;
401 : 4 : PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC;
402 : :
403 [ + - + - ]: 8 : if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) &&
404 [ + - ]: 8 : pymemallocator_eq(&_PyMem, &dbg_mem) &&
405 : 4 : pymemallocator_eq(&_PyObject, &dbg_obj))
406 : : {
407 : : /* Debug hooks installed */
408 [ + - + + ]: 8 : if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
409 [ + - ]: 5 : pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) &&
410 : 1 : pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc))
411 : : {
412 : 1 : return "malloc_debug";
413 : : }
414 : : #ifdef WITH_PYMALLOC
415 [ + - + - ]: 6 : if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
416 [ + - ]: 6 : pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) &&
417 : 3 : pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc))
418 : : {
419 : 3 : return "pymalloc_debug";
420 : : }
421 : : #endif
422 : : }
423 : 0 : return NULL;
424 : : }
425 : :
426 : :
427 : : #undef MALLOC_ALLOC
428 : : #undef PYMALLOC_ALLOC
429 : : #undef PYRAW_ALLOC
430 : : #undef PYMEM_ALLOC
431 : : #undef PYOBJ_ALLOC
432 : : #undef PYDBGRAW_ALLOC
433 : : #undef PYDBGMEM_ALLOC
434 : : #undef PYDBGOBJ_ALLOC
435 : :
436 : :
437 : : static PyObjectArenaAllocator _PyObject_Arena = {NULL,
438 : : #ifdef MS_WINDOWS
439 : : _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree
440 : : #elif defined(ARENAS_USE_MMAP)
441 : : _PyObject_ArenaMmap, _PyObject_ArenaMunmap
442 : : #else
443 : : _PyObject_ArenaMalloc, _PyObject_ArenaFree
444 : : #endif
445 : : };
446 : :
447 : : #ifdef WITH_PYMALLOC
448 : : static int
449 : 4 : _PyMem_DebugEnabled(void)
450 : : {
451 : 4 : return (_PyObject.malloc == _PyMem_DebugMalloc);
452 : : }
453 : :
454 : : static int
455 : 4 : _PyMem_PymallocEnabled(void)
456 : : {
457 [ - + ]: 4 : if (_PyMem_DebugEnabled()) {
458 : 0 : return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
459 : : }
460 : : else {
461 : 4 : return (_PyObject.malloc == _PyObject_Malloc);
462 : : }
463 : : }
464 : : #endif
465 : :
466 : :
467 : : static void
468 : 114 : _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain)
469 : : {
470 : : PyMemAllocatorEx alloc;
471 : :
472 [ + + ]: 114 : if (domain == PYMEM_DOMAIN_RAW) {
473 [ - + ]: 38 : if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) {
474 : 0 : return;
475 : : }
476 : :
477 : 38 : PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);
478 : 38 : alloc.ctx = &_PyMem_Debug.raw;
479 : 38 : alloc.malloc = _PyMem_DebugRawMalloc;
480 : 38 : alloc.calloc = _PyMem_DebugRawCalloc;
481 : 38 : alloc.realloc = _PyMem_DebugRawRealloc;
482 : 38 : alloc.free = _PyMem_DebugRawFree;
483 : 38 : PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
484 : : }
485 [ + + ]: 76 : else if (domain == PYMEM_DOMAIN_MEM) {
486 [ - + ]: 38 : if (_PyMem.malloc == _PyMem_DebugMalloc) {
487 : 0 : return;
488 : : }
489 : :
490 : 38 : PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);
491 : 38 : alloc.ctx = &_PyMem_Debug.mem;
492 : 38 : alloc.malloc = _PyMem_DebugMalloc;
493 : 38 : alloc.calloc = _PyMem_DebugCalloc;
494 : 38 : alloc.realloc = _PyMem_DebugRealloc;
495 : 38 : alloc.free = _PyMem_DebugFree;
496 : 38 : PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
497 : : }
498 [ + - ]: 38 : else if (domain == PYMEM_DOMAIN_OBJ) {
499 [ - + ]: 38 : if (_PyObject.malloc == _PyMem_DebugMalloc) {
500 : 0 : return;
501 : : }
502 : :
503 : 38 : PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);
504 : 38 : alloc.ctx = &_PyMem_Debug.obj;
505 : 38 : alloc.malloc = _PyMem_DebugMalloc;
506 : 38 : alloc.calloc = _PyMem_DebugCalloc;
507 : 38 : alloc.realloc = _PyMem_DebugRealloc;
508 : 38 : alloc.free = _PyMem_DebugFree;
509 : 38 : PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
510 : : }
511 : : }
512 : :
513 : :
514 : : void
515 : 4 : PyMem_SetupDebugHooks(void)
516 : : {
517 : 4 : _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW);
518 : 4 : _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM);
519 : 4 : _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ);
520 : 4 : }
521 : :
522 : : void
523 : 35167 : PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
524 : : {
525 [ + + + - ]: 35167 : switch(domain)
526 : : {
527 : 34971 : case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
528 : 98 : case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
529 : 98 : case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
530 : 0 : default:
531 : : /* unknown domain: set all attributes to NULL */
532 : 0 : allocator->ctx = NULL;
533 : 0 : allocator->malloc = NULL;
534 : 0 : allocator->calloc = NULL;
535 : 0 : allocator->realloc = NULL;
536 : 0 : allocator->free = NULL;
537 : : }
538 : 35167 : }
539 : :
540 : : void
541 : 70241 : PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
542 : : {
543 [ + + + - ]: 70241 : switch(domain)
544 : : {
545 : 69879 : case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
546 : 181 : case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
547 : 181 : case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
548 : : /* ignore unknown domain */
549 : : }
550 : 70241 : }
551 : :
552 : : void
553 : 0 : PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
554 : : {
555 : 0 : *allocator = _PyObject_Arena;
556 : 0 : }
557 : :
558 : : void *
559 : 23498 : _PyObject_VirtualAlloc(size_t size)
560 : : {
561 : 23498 : return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size);
562 : : }
563 : :
564 : : void
565 : 23359 : _PyObject_VirtualFree(void *obj, size_t size)
566 : : {
567 : 23359 : _PyObject_Arena.free(_PyObject_Arena.ctx, obj, size);
568 : 23359 : }
569 : :
570 : : void
571 : 0 : PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
572 : : {
573 : 0 : _PyObject_Arena = *allocator;
574 : 0 : }
575 : :
576 : : void *
577 : 26815567 : PyMem_RawMalloc(size_t size)
578 : : {
579 : : /*
580 : : * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
581 : : * Most python internals blindly use a signed Py_ssize_t to track
582 : : * things without checking for overflows or negatives.
583 : : * As size_t is unsigned, checking for size < 0 is not required.
584 : : */
585 [ - + ]: 26815567 : if (size > (size_t)PY_SSIZE_T_MAX)
586 : 0 : return NULL;
587 : 26815567 : return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
588 : : }
589 : :
590 : : void *
591 : 2840940 : PyMem_RawCalloc(size_t nelem, size_t elsize)
592 : : {
593 : : /* see PyMem_RawMalloc() */
594 [ + + - + ]: 2840940 : if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
595 : 0 : return NULL;
596 : 2840940 : return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
597 : : }
598 : :
599 : : void*
600 : 5224670 : PyMem_RawRealloc(void *ptr, size_t new_size)
601 : : {
602 : : /* see PyMem_RawMalloc() */
603 [ - + ]: 5224670 : if (new_size > (size_t)PY_SSIZE_T_MAX)
604 : 0 : return NULL;
605 : 5224670 : return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
606 : : }
607 : :
608 : 30202210 : void PyMem_RawFree(void *ptr)
609 : : {
610 : 30202210 : _PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
611 : 30202210 : }
612 : :
613 : :
614 : : void *
615 : 124844262 : PyMem_Malloc(size_t size)
616 : : {
617 : : /* see PyMem_RawMalloc() */
618 [ - + ]: 124844262 : if (size > (size_t)PY_SSIZE_T_MAX)
619 : 0 : return NULL;
620 : : OBJECT_STAT_INC_COND(allocations512, size < 512);
621 : : OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094);
622 : : OBJECT_STAT_INC_COND(allocations_big, size >= 4094);
623 : : OBJECT_STAT_INC(allocations);
624 : 124844262 : return _PyMem.malloc(_PyMem.ctx, size);
625 : : }
626 : :
627 : : void *
628 : 69165316 : PyMem_Calloc(size_t nelem, size_t elsize)
629 : : {
630 : : /* see PyMem_RawMalloc() */
631 [ + + - + ]: 69165316 : if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
632 : 0 : return NULL;
633 : : OBJECT_STAT_INC_COND(allocations512, elsize < 512);
634 : : OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094);
635 : : OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094);
636 : : OBJECT_STAT_INC(allocations);
637 : 69165316 : return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
638 : : }
639 : :
640 : : void *
641 : 34171006 : PyMem_Realloc(void *ptr, size_t new_size)
642 : : {
643 : : /* see PyMem_RawMalloc() */
644 [ - + ]: 34171006 : if (new_size > (size_t)PY_SSIZE_T_MAX)
645 : 0 : return NULL;
646 : 34171006 : return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
647 : : }
648 : :
649 : : void
650 : 219595820 : PyMem_Free(void *ptr)
651 : : {
652 : : OBJECT_STAT_INC(frees);
653 : 219595820 : _PyMem.free(_PyMem.ctx, ptr);
654 : 219595820 : }
655 : :
656 : :
657 : : wchar_t*
658 : 330090 : _PyMem_RawWcsdup(const wchar_t *str)
659 : : {
660 : : assert(str != NULL);
661 : :
662 : 330090 : size_t len = wcslen(str);
663 [ - + ]: 330090 : if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) {
664 : 0 : return NULL;
665 : : }
666 : :
667 : 330090 : size_t size = (len + 1) * sizeof(wchar_t);
668 : 330090 : wchar_t *str2 = PyMem_RawMalloc(size);
669 [ - + ]: 330090 : if (str2 == NULL) {
670 : 0 : return NULL;
671 : : }
672 : :
673 : 330090 : memcpy(str2, str, size);
674 : 330090 : return str2;
675 : : }
676 : :
677 : : char *
678 : 9542 : _PyMem_RawStrdup(const char *str)
679 : : {
680 : : assert(str != NULL);
681 : 9542 : size_t size = strlen(str) + 1;
682 : 9542 : char *copy = PyMem_RawMalloc(size);
683 [ - + ]: 9542 : if (copy == NULL) {
684 : 0 : return NULL;
685 : : }
686 : 9542 : memcpy(copy, str, size);
687 : 9542 : return copy;
688 : : }
689 : :
690 : : char *
691 : 172564 : _PyMem_Strdup(const char *str)
692 : : {
693 : : assert(str != NULL);
694 : 172564 : size_t size = strlen(str) + 1;
695 : 172564 : char *copy = PyMem_Malloc(size);
696 [ - + ]: 172564 : if (copy == NULL) {
697 : 0 : return NULL;
698 : : }
699 : 172564 : memcpy(copy, str, size);
700 : 172564 : return copy;
701 : : }
702 : :
703 : : void *
704 : 816302720 : PyObject_Malloc(size_t size)
705 : : {
706 : : /* see PyMem_RawMalloc() */
707 [ - + ]: 816302720 : if (size > (size_t)PY_SSIZE_T_MAX)
708 : 0 : return NULL;
709 : : OBJECT_STAT_INC_COND(allocations512, size < 512);
710 : : OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094);
711 : : OBJECT_STAT_INC_COND(allocations_big, size >= 4094);
712 : : OBJECT_STAT_INC(allocations);
713 : 816302720 : return _PyObject.malloc(_PyObject.ctx, size);
714 : : }
715 : :
716 : : void *
717 : 5244538 : PyObject_Calloc(size_t nelem, size_t elsize)
718 : : {
719 : : /* see PyMem_RawMalloc() */
720 [ + + - + ]: 5244538 : if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
721 : 0 : return NULL;
722 : : OBJECT_STAT_INC_COND(allocations512, elsize < 512);
723 : : OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094);
724 : : OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094);
725 : : OBJECT_STAT_INC(allocations);
726 : 5244538 : return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
727 : : }
728 : :
729 : : void *
730 : 16055160 : PyObject_Realloc(void *ptr, size_t new_size)
731 : : {
732 : : /* see PyMem_RawMalloc() */
733 [ - + ]: 16055160 : if (new_size > (size_t)PY_SSIZE_T_MAX)
734 : 0 : return NULL;
735 : 16055160 : return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
736 : : }
737 : :
738 : : void
739 : 820447117 : PyObject_Free(void *ptr)
740 : : {
741 : : OBJECT_STAT_INC(frees);
742 : 820447117 : _PyObject.free(_PyObject.ctx, ptr);
743 : 820447117 : }
744 : :
745 : :
746 : : /* If we're using GCC, use __builtin_expect() to reduce overhead of
747 : : the valgrind checks */
748 : : #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
749 : : # define UNLIKELY(value) __builtin_expect((value), 0)
750 : : # define LIKELY(value) __builtin_expect((value), 1)
751 : : #else
752 : : # define UNLIKELY(value) (value)
753 : : # define LIKELY(value) (value)
754 : : #endif
755 : :
756 : : #ifdef WITH_PYMALLOC
757 : :
758 : : #ifdef WITH_VALGRIND
759 : : #include <valgrind/valgrind.h>
760 : :
761 : : /* -1 indicates that we haven't checked that we're running on valgrind yet. */
762 : : static int running_on_valgrind = -1;
763 : : #endif
764 : :
765 : :
766 : : /* An object allocator for Python.
767 : :
768 : : Here is an introduction to the layers of the Python memory architecture,
769 : : showing where the object allocator is actually used (layer +2), It is
770 : : called for every object allocation and deallocation (PyObject_New/Del),
771 : : unless the object-specific allocators implement a proprietary allocation
772 : : scheme (ex.: ints use a simple free list). This is also the place where
773 : : the cyclic garbage collector operates selectively on container objects.
774 : :
775 : :
776 : : Object-specific allocators
777 : : _____ ______ ______ ________
778 : : [ int ] [ dict ] [ list ] ... [ string ] Python core |
779 : : +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
780 : : _______________________________ | |
781 : : [ Python's object allocator ] | |
782 : : +2 | ####### Object memory ####### | <------ Internal buffers ------> |
783 : : ______________________________________________________________ |
784 : : [ Python's raw memory allocator (PyMem_ API) ] |
785 : : +1 | <----- Python memory (under PyMem manager's control) ------> | |
786 : : __________________________________________________________________
787 : : [ Underlying general-purpose allocator (ex: C library malloc) ]
788 : : 0 | <------ Virtual memory allocated for the python process -------> |
789 : :
790 : : =========================================================================
791 : : _______________________________________________________________________
792 : : [ OS-specific Virtual Memory Manager (VMM) ]
793 : : -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
794 : : __________________________________ __________________________________
795 : : [ ] [ ]
796 : : -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
797 : :
798 : : */
799 : : /*==========================================================================*/
800 : :
801 : : /* A fast, special-purpose memory allocator for small blocks, to be used
802 : : on top of a general-purpose malloc -- heavily based on previous art. */
803 : :
804 : : /* Vladimir Marangozov -- August 2000 */
805 : :
806 : : /*
807 : : * "Memory management is where the rubber meets the road -- if we do the wrong
808 : : * thing at any level, the results will not be good. And if we don't make the
809 : : * levels work well together, we are in serious trouble." (1)
810 : : *
811 : : * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
812 : : * "Dynamic Storage Allocation: A Survey and Critical Review",
813 : : * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
814 : : */
815 : :
816 : : /* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
817 : :
818 : : /*==========================================================================*/
819 : :
820 : : /*
821 : : * Allocation strategy abstract:
822 : : *
823 : : * For small requests, the allocator sub-allocates <Big> blocks of memory.
824 : : * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
825 : : * system's allocator.
826 : : *
827 : : * Small requests are grouped in size classes spaced 8 bytes apart, due
828 : : * to the required valid alignment of the returned address. Requests of
829 : : * a particular size are serviced from memory pools of 4K (one VMM page).
830 : : * Pools are fragmented on demand and contain free lists of blocks of one
831 : : * particular size class. In other words, there is a fixed-size allocator
832 : : * for each size class. Free pools are shared by the different allocators
833 : : * thus minimizing the space reserved for a particular size class.
834 : : *
835 : : * This allocation strategy is a variant of what is known as "simple
836 : : * segregated storage based on array of free lists". The main drawback of
837 : : * simple segregated storage is that we might end up with lot of reserved
838 : : * memory for the different free lists, which degenerate in time. To avoid
839 : : * this, we partition each free list in pools and we share dynamically the
840 : : * reserved space between all free lists. This technique is quite efficient
841 : : * for memory intensive programs which allocate mainly small-sized blocks.
842 : : *
843 : : * For small requests we have the following table:
844 : : *
845 : : * Request in bytes Size of allocated block Size class idx
846 : : * ----------------------------------------------------------------
847 : : * 1-8 8 0
848 : : * 9-16 16 1
849 : : * 17-24 24 2
850 : : * 25-32 32 3
851 : : * 33-40 40 4
852 : : * 41-48 48 5
853 : : * 49-56 56 6
854 : : * 57-64 64 7
855 : : * 65-72 72 8
856 : : * ... ... ...
857 : : * 497-504 504 62
858 : : * 505-512 512 63
859 : : *
860 : : * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
861 : : * allocator.
862 : : */
863 : :
864 : : /*==========================================================================*/
865 : :
866 : : /*
867 : : * -- Main tunable settings section --
868 : : */
869 : :
870 : : /*
871 : : * Alignment of addresses returned to the user. 8-bytes alignment works
872 : : * on most current architectures (with 32-bit or 64-bit address buses).
873 : : * The alignment value is also used for grouping small requests in size
874 : : * classes spaced ALIGNMENT bytes apart.
875 : : *
876 : : * You shouldn't change this unless you know what you are doing.
877 : : */
878 : :
879 : : #if SIZEOF_VOID_P > 4
880 : : #define ALIGNMENT 16 /* must be 2^N */
881 : : #define ALIGNMENT_SHIFT 4
882 : : #else
883 : : #define ALIGNMENT 8 /* must be 2^N */
884 : : #define ALIGNMENT_SHIFT 3
885 : : #endif
886 : :
887 : : /* Return the number of bytes in size class I, as a uint. */
888 : : #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
889 : :
890 : : /*
891 : : * Max size threshold below which malloc requests are considered to be
892 : : * small enough in order to use preallocated memory pools. You can tune
893 : : * this value according to your application behaviour and memory needs.
894 : : *
895 : : * Note: a size threshold of 512 guarantees that newly created dictionaries
896 : : * will be allocated from preallocated memory pools on 64-bit.
897 : : *
898 : : * The following invariants must hold:
899 : : * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
900 : : * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
901 : : *
902 : : * Although not required, for better performance and space efficiency,
903 : : * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
904 : : */
905 : : #define SMALL_REQUEST_THRESHOLD 512
906 : : #define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
907 : :
908 : : /*
909 : : * The system's VMM page size can be obtained on most unices with a
910 : : * getpagesize() call or deduced from various header files. To make
911 : : * things simpler, we assume that it is 4K, which is OK for most systems.
912 : : * It is probably better if this is the native page size, but it doesn't
913 : : * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
914 : : * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
915 : : * violation fault. 4K is apparently OK for all the platforms that python
916 : : * currently targets.
917 : : */
918 : : #define SYSTEM_PAGE_SIZE (4 * 1024)
919 : :
920 : : /*
921 : : * Maximum amount of memory managed by the allocator for small requests.
922 : : */
923 : : #ifdef WITH_MEMORY_LIMITS
924 : : #ifndef SMALL_MEMORY_LIMIT
925 : : #define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
926 : : #endif
927 : : #endif
928 : :
929 : : #if !defined(WITH_PYMALLOC_RADIX_TREE)
930 : : /* Use radix-tree to track arena memory regions, for address_in_range().
931 : : * Enable by default since it allows larger pool sizes. Can be disabled
932 : : * using -DWITH_PYMALLOC_RADIX_TREE=0 */
933 : : #define WITH_PYMALLOC_RADIX_TREE 1
934 : : #endif
935 : :
936 : : #if SIZEOF_VOID_P > 4
937 : : /* on 64-bit platforms use larger pools and arenas if we can */
938 : : #define USE_LARGE_ARENAS
939 : : #if WITH_PYMALLOC_RADIX_TREE
940 : : /* large pools only supported if radix-tree is enabled */
941 : : #define USE_LARGE_POOLS
942 : : #endif
943 : : #endif
944 : :
945 : : /*
946 : : * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
947 : : * on a page boundary. This is a reserved virtual address space for the
948 : : * current process (obtained through a malloc()/mmap() call). In no way this
949 : : * means that the memory arenas will be used entirely. A malloc(<Big>) is
950 : : * usually an address range reservation for <Big> bytes, unless all pages within
951 : : * this space are referenced subsequently. So malloc'ing big blocks and not
952 : : * using them does not mean "wasting memory". It's an addressable range
953 : : * wastage...
954 : : *
955 : : * Arenas are allocated with mmap() on systems supporting anonymous memory
956 : : * mappings to reduce heap fragmentation.
957 : : */
958 : : #ifdef USE_LARGE_ARENAS
959 : : #define ARENA_BITS 20 /* 1 MiB */
960 : : #else
961 : : #define ARENA_BITS 18 /* 256 KiB */
962 : : #endif
963 : : #define ARENA_SIZE (1 << ARENA_BITS)
964 : : #define ARENA_SIZE_MASK (ARENA_SIZE - 1)
965 : :
966 : : #ifdef WITH_MEMORY_LIMITS
967 : : #define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
968 : : #endif
969 : :
970 : : /*
971 : : * Size of the pools used for small blocks. Must be a power of 2.
972 : : */
973 : : #ifdef USE_LARGE_POOLS
974 : : #define POOL_BITS 14 /* 16 KiB */
975 : : #else
976 : : #define POOL_BITS 12 /* 4 KiB */
977 : : #endif
978 : : #define POOL_SIZE (1 << POOL_BITS)
979 : : #define POOL_SIZE_MASK (POOL_SIZE - 1)
980 : :
981 : : #if !WITH_PYMALLOC_RADIX_TREE
982 : : #if POOL_SIZE != SYSTEM_PAGE_SIZE
983 : : # error "pool size must be equal to system page size"
984 : : #endif
985 : : #endif
986 : :
987 : : #define MAX_POOLS_IN_ARENA (ARENA_SIZE / POOL_SIZE)
988 : : #if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE
989 : : # error "arena size not an exact multiple of pool size"
990 : : #endif
991 : :
992 : : /*
993 : : * -- End of tunable settings section --
994 : : */
995 : :
996 : : /*==========================================================================*/
997 : :
998 : : /* When you say memory, my mind reasons in terms of (pointers to) blocks */
999 : : typedef uint8_t block;
1000 : :
1001 : : /* Pool for small blocks. */
1002 : : struct pool_header {
1003 : : union { block *_padding;
1004 : : uint count; } ref; /* number of allocated blocks */
1005 : : block *freeblock; /* pool's free list head */
1006 : : struct pool_header *nextpool; /* next pool of this size class */
1007 : : struct pool_header *prevpool; /* previous pool "" */
1008 : : uint arenaindex; /* index into arenas of base adr */
1009 : : uint szidx; /* block size class index */
1010 : : uint nextoffset; /* bytes to virgin block */
1011 : : uint maxnextoffset; /* largest valid nextoffset */
1012 : : };
1013 : :
1014 : : typedef struct pool_header *poolp;
1015 : :
1016 : : /* Record keeping for arenas. */
1017 : : struct arena_object {
1018 : : /* The address of the arena, as returned by malloc. Note that 0
1019 : : * will never be returned by a successful malloc, and is used
1020 : : * here to mark an arena_object that doesn't correspond to an
1021 : : * allocated arena.
1022 : : */
1023 : : uintptr_t address;
1024 : :
1025 : : /* Pool-aligned pointer to the next pool to be carved off. */
1026 : : block* pool_address;
1027 : :
1028 : : /* The number of available pools in the arena: free pools + never-
1029 : : * allocated pools.
1030 : : */
1031 : : uint nfreepools;
1032 : :
1033 : : /* The total number of pools in the arena, whether or not available. */
1034 : : uint ntotalpools;
1035 : :
1036 : : /* Singly-linked list of available pools. */
1037 : : struct pool_header* freepools;
1038 : :
1039 : : /* Whenever this arena_object is not associated with an allocated
1040 : : * arena, the nextarena member is used to link all unassociated
1041 : : * arena_objects in the singly-linked `unused_arena_objects` list.
1042 : : * The prevarena member is unused in this case.
1043 : : *
1044 : : * When this arena_object is associated with an allocated arena
1045 : : * with at least one available pool, both members are used in the
1046 : : * doubly-linked `usable_arenas` list, which is maintained in
1047 : : * increasing order of `nfreepools` values.
1048 : : *
1049 : : * Else this arena_object is associated with an allocated arena
1050 : : * all of whose pools are in use. `nextarena` and `prevarena`
1051 : : * are both meaningless in this case.
1052 : : */
1053 : : struct arena_object* nextarena;
1054 : : struct arena_object* prevarena;
1055 : : };
1056 : :
1057 : : #define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)
1058 : :
1059 : : #define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
1060 : :
1061 : : /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
1062 : : #define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))
1063 : :
1064 : : /* Return total number of blocks in pool of size index I, as a uint. */
1065 : : #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
1066 : :
1067 : : /*==========================================================================*/
1068 : :
1069 : : /*
1070 : : * Pool table -- headed, circular, doubly-linked lists of partially used pools.
1071 : :
1072 : : This is involved. For an index i, usedpools[i+i] is the header for a list of
1073 : : all partially used pools holding small blocks with "size class idx" i. So
1074 : : usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
1075 : : 16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
1076 : :
1077 : : Pools are carved off an arena's highwater mark (an arena_object's pool_address
1078 : : member) as needed. Once carved off, a pool is in one of three states forever
1079 : : after:
1080 : :
1081 : : used == partially used, neither empty nor full
1082 : : At least one block in the pool is currently allocated, and at least one
1083 : : block in the pool is not currently allocated (note this implies a pool
1084 : : has room for at least two blocks).
1085 : : This is a pool's initial state, as a pool is created only when malloc
1086 : : needs space.
1087 : : The pool holds blocks of a fixed size, and is in the circular list headed
1088 : : at usedpools[i] (see above). It's linked to the other used pools of the
1089 : : same size class via the pool_header's nextpool and prevpool members.
1090 : : If all but one block is currently allocated, a malloc can cause a
1091 : : transition to the full state. If all but one block is not currently
1092 : : allocated, a free can cause a transition to the empty state.
1093 : :
1094 : : full == all the pool's blocks are currently allocated
1095 : : On transition to full, a pool is unlinked from its usedpools[] list.
1096 : : It's not linked to from anything then anymore, and its nextpool and
1097 : : prevpool members are meaningless until it transitions back to used.
1098 : : A free of a block in a full pool puts the pool back in the used state.
1099 : : Then it's linked in at the front of the appropriate usedpools[] list, so
1100 : : that the next allocation for its size class will reuse the freed block.
1101 : :
1102 : : empty == all the pool's blocks are currently available for allocation
1103 : : On transition to empty, a pool is unlinked from its usedpools[] list,
1104 : : and linked to the front of its arena_object's singly-linked freepools list,
1105 : : via its nextpool member. The prevpool member has no meaning in this case.
1106 : : Empty pools have no inherent size class: the next time a malloc finds
1107 : : an empty list in usedpools[], it takes the first pool off of freepools.
1108 : : If the size class needed happens to be the same as the size class the pool
1109 : : last had, some pool initialization can be skipped.
1110 : :
1111 : :
1112 : : Block Management
1113 : :
1114 : : Blocks within pools are again carved out as needed. pool->freeblock points to
1115 : : the start of a singly-linked list of free blocks within the pool. When a
1116 : : block is freed, it's inserted at the front of its pool's freeblock list. Note
1117 : : that the available blocks in a pool are *not* linked all together when a pool
1118 : : is initialized. Instead only "the first two" (lowest addresses) blocks are
1119 : : set up, returning the first such block, and setting pool->freeblock to a
1120 : : one-block list holding the second such block. This is consistent with that
1121 : : pymalloc strives at all levels (arena, pool, and block) never to touch a piece
1122 : : of memory until it's actually needed.
1123 : :
1124 : : So long as a pool is in the used state, we're certain there *is* a block
1125 : : available for allocating, and pool->freeblock is not NULL. If pool->freeblock
1126 : : points to the end of the free list before we've carved the entire pool into
1127 : : blocks, that means we simply haven't yet gotten to one of the higher-address
1128 : : blocks. The offset from the pool_header to the start of "the next" virgin
1129 : : block is stored in the pool_header nextoffset member, and the largest value
1130 : : of nextoffset that makes sense is stored in the maxnextoffset member when a
1131 : : pool is initialized. All the blocks in a pool have been passed out at least
1132 : : once when and only when nextoffset > maxnextoffset.
1133 : :
1134 : :
1135 : : Major obscurity: While the usedpools vector is declared to have poolp
1136 : : entries, it doesn't really. It really contains two pointers per (conceptual)
1137 : : poolp entry, the nextpool and prevpool members of a pool_header. The
1138 : : excruciating initialization code below fools C so that
1139 : :
1140 : : usedpool[i+i]
1141 : :
1142 : : "acts like" a genuine poolp, but only so long as you only reference its
1143 : : nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
1144 : : compensating for that a pool_header's nextpool and prevpool members
1145 : : immediately follow a pool_header's first two members:
1146 : :
1147 : : union { block *_padding;
1148 : : uint count; } ref;
1149 : : block *freeblock;
1150 : :
1151 : : each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
1152 : : contains is a fudged-up pointer p such that *if* C believes it's a poolp
1153 : : pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
1154 : : circular list is empty).
1155 : :
1156 : : It's unclear why the usedpools setup is so convoluted. It could be to
1157 : : minimize the amount of cache required to hold this heavily-referenced table
1158 : : (which only *needs* the two interpool pointer members of a pool_header). OTOH,
1159 : : referencing code has to remember to "double the index" and doing so isn't
1160 : : free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
1161 : : on that C doesn't insert any padding anywhere in a pool_header at or before
1162 : : the prevpool member.
1163 : : **************************************************************************** */
1164 : :
1165 : : #define PTA(x) ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
1166 : : #define PT(x) PTA(x), PTA(x)
1167 : :
1168 : : static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
1169 : : PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
1170 : : #if NB_SMALL_SIZE_CLASSES > 8
1171 : : , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
1172 : : #if NB_SMALL_SIZE_CLASSES > 16
1173 : : , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
1174 : : #if NB_SMALL_SIZE_CLASSES > 24
1175 : : , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
1176 : : #if NB_SMALL_SIZE_CLASSES > 32
1177 : : , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
1178 : : #if NB_SMALL_SIZE_CLASSES > 40
1179 : : , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
1180 : : #if NB_SMALL_SIZE_CLASSES > 48
1181 : : , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
1182 : : #if NB_SMALL_SIZE_CLASSES > 56
1183 : : , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
1184 : : #if NB_SMALL_SIZE_CLASSES > 64
1185 : : #error "NB_SMALL_SIZE_CLASSES should be less than 64"
1186 : : #endif /* NB_SMALL_SIZE_CLASSES > 64 */
1187 : : #endif /* NB_SMALL_SIZE_CLASSES > 56 */
1188 : : #endif /* NB_SMALL_SIZE_CLASSES > 48 */
1189 : : #endif /* NB_SMALL_SIZE_CLASSES > 40 */
1190 : : #endif /* NB_SMALL_SIZE_CLASSES > 32 */
1191 : : #endif /* NB_SMALL_SIZE_CLASSES > 24 */
1192 : : #endif /* NB_SMALL_SIZE_CLASSES > 16 */
1193 : : #endif /* NB_SMALL_SIZE_CLASSES > 8 */
1194 : : };
1195 : :
1196 : : /*==========================================================================
1197 : : Arena management.
1198 : :
1199 : : `arenas` is a vector of arena_objects. It contains maxarenas entries, some of
1200 : : which may not be currently used (== they're arena_objects that aren't
1201 : : currently associated with an allocated arena). Note that arenas proper are
1202 : : separately malloc'ed.
1203 : :
1204 : : Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
1205 : : we do try to free() arenas, and use some mild heuristic strategies to increase
1206 : : the likelihood that arenas eventually can be freed.
1207 : :
1208 : : unused_arena_objects
1209 : :
1210 : : This is a singly-linked list of the arena_objects that are currently not
1211 : : being used (no arena is associated with them). Objects are taken off the
1212 : : head of the list in new_arena(), and are pushed on the head of the list in
1213 : : PyObject_Free() when the arena is empty. Key invariant: an arena_object
1214 : : is on this list if and only if its .address member is 0.
1215 : :
1216 : : usable_arenas
1217 : :
1218 : : This is a doubly-linked list of the arena_objects associated with arenas
1219 : : that have pools available. These pools are either waiting to be reused,
1220 : : or have not been used before. The list is sorted to have the most-
1221 : : allocated arenas first (ascending order based on the nfreepools member).
1222 : : This means that the next allocation will come from a heavily used arena,
1223 : : which gives the nearly empty arenas a chance to be returned to the system.
1224 : : In my unscientific tests this dramatically improved the number of arenas
1225 : : that could be freed.
1226 : :
1227 : : Note that an arena_object associated with an arena all of whose pools are
1228 : : currently in use isn't on either list.
1229 : :
1230 : : Changed in Python 3.8: keeping usable_arenas sorted by number of free pools
1231 : : used to be done by one-at-a-time linear search when an arena's number of
1232 : : free pools changed. That could, overall, consume time quadratic in the
1233 : : number of arenas. That didn't really matter when there were only a few
1234 : : hundred arenas (typical!), but could be a timing disaster when there were
1235 : : hundreds of thousands. See bpo-37029.
1236 : :
1237 : : Now we have a vector of "search fingers" to eliminate the need to search:
1238 : : nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas
1239 : : with nfp free pools. This is NULL if and only if there is no arena with
1240 : : nfp free pools in usable_arenas.
1241 : : */
1242 : :
1243 : : /* Array of objects used to track chunks of memory (arenas). */
1244 : : static struct arena_object* arenas = NULL;
1245 : : /* Number of slots currently allocated in the `arenas` vector. */
1246 : : static uint maxarenas = 0;
1247 : :
1248 : : /* The head of the singly-linked, NULL-terminated list of available
1249 : : * arena_objects.
1250 : : */
1251 : : static struct arena_object* unused_arena_objects = NULL;
1252 : :
1253 : : /* The head of the doubly-linked, NULL-terminated at each end, list of
1254 : : * arena_objects associated with arenas that have pools available.
1255 : : */
1256 : : static struct arena_object* usable_arenas = NULL;
1257 : :
1258 : : /* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */
1259 : : static struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1] = { NULL };
1260 : :
1261 : : /* How many arena_objects do we initially allocate?
1262 : : * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
1263 : : * `arenas` vector.
1264 : : */
1265 : : #define INITIAL_ARENA_OBJECTS 16
1266 : :
1267 : : /* Number of arenas allocated that haven't been free()'d. */
1268 : : static size_t narenas_currently_allocated = 0;
1269 : :
1270 : : /* Total number of times malloc() called to allocate an arena. */
1271 : : static size_t ntimes_arena_allocated = 0;
1272 : : /* High water mark (max value ever seen) for narenas_currently_allocated. */
1273 : : static size_t narenas_highwater = 0;
1274 : :
1275 : : static Py_ssize_t raw_allocated_blocks;
1276 : :
1277 : : Py_ssize_t
1278 : 3 : _Py_GetAllocatedBlocks(void)
1279 : : {
1280 : 3 : Py_ssize_t n = raw_allocated_blocks;
1281 : : /* add up allocated blocks for used pools */
1282 [ + + ]: 51 : for (uint i = 0; i < maxarenas; ++i) {
1283 : : /* Skip arenas which are not allocated. */
1284 [ + + ]: 48 : if (arenas[i].address == 0) {
1285 : 27 : continue;
1286 : : }
1287 : :
1288 : 21 : uintptr_t base = (uintptr_t)_Py_ALIGN_UP(arenas[i].address, POOL_SIZE);
1289 : :
1290 : : /* visit every pool in the arena */
1291 : : assert(base <= (uintptr_t) arenas[i].pool_address);
1292 [ + + ]: 1278 : for (; base < (uintptr_t) arenas[i].pool_address; base += POOL_SIZE) {
1293 : 1257 : poolp p = (poolp)base;
1294 : 1257 : n += p->ref.count;
1295 : : }
1296 : : }
1297 : 3 : return n;
1298 : : }
1299 : :
1300 : : #if WITH_PYMALLOC_RADIX_TREE
1301 : : /*==========================================================================*/
1302 : : /* radix tree for tracking arena usage. If enabled, used to implement
1303 : : address_in_range().
1304 : :
1305 : : memory address bit allocation for keys
1306 : :
1307 : : 64-bit pointers, IGNORE_BITS=0 and 2^20 arena size:
1308 : : 15 -> MAP_TOP_BITS
1309 : : 15 -> MAP_MID_BITS
1310 : : 14 -> MAP_BOT_BITS
1311 : : 20 -> ideal aligned arena
1312 : : ----
1313 : : 64
1314 : :
1315 : : 64-bit pointers, IGNORE_BITS=16, and 2^20 arena size:
1316 : : 16 -> IGNORE_BITS
1317 : : 10 -> MAP_TOP_BITS
1318 : : 10 -> MAP_MID_BITS
1319 : : 8 -> MAP_BOT_BITS
1320 : : 20 -> ideal aligned arena
1321 : : ----
1322 : : 64
1323 : :
1324 : : 32-bit pointers and 2^18 arena size:
1325 : : 14 -> MAP_BOT_BITS
1326 : : 18 -> ideal aligned arena
1327 : : ----
1328 : : 32
1329 : :
1330 : : */
1331 : :
1332 : : #if SIZEOF_VOID_P == 8
1333 : :
1334 : : /* number of bits in a pointer */
1335 : : #define POINTER_BITS 64
1336 : :
1337 : : /* High bits of memory addresses that will be ignored when indexing into the
1338 : : * radix tree. Setting this to zero is the safe default. For most 64-bit
1339 : : * machines, setting this to 16 would be safe. The kernel would not give
1340 : : * user-space virtual memory addresses that have significant information in
1341 : : * those high bits. The main advantage to setting IGNORE_BITS > 0 is that less
1342 : : * virtual memory will be used for the top and middle radix tree arrays. Those
1343 : : * arrays are allocated in the BSS segment and so will typically consume real
1344 : : * memory only if actually accessed.
1345 : : */
1346 : : #define IGNORE_BITS 0
1347 : :
1348 : : /* use the top and mid layers of the radix tree */
1349 : : #define USE_INTERIOR_NODES
1350 : :
1351 : : #elif SIZEOF_VOID_P == 4
1352 : :
1353 : : #define POINTER_BITS 32
1354 : : #define IGNORE_BITS 0
1355 : :
1356 : : #else
1357 : :
1358 : : /* Currently this code works for 64-bit or 32-bit pointers only. */
1359 : : #error "obmalloc radix tree requires 64-bit or 32-bit pointers."
1360 : :
1361 : : #endif /* SIZEOF_VOID_P */
1362 : :
1363 : : /* arena_coverage_t members require this to be true */
1364 : : #if ARENA_BITS >= 32
1365 : : # error "arena size must be < 2^32"
1366 : : #endif
1367 : :
1368 : : /* the lower bits of the address that are not ignored */
1369 : : #define ADDRESS_BITS (POINTER_BITS - IGNORE_BITS)
1370 : :
1371 : : #ifdef USE_INTERIOR_NODES
1372 : : /* number of bits used for MAP_TOP and MAP_MID nodes */
1373 : : #define INTERIOR_BITS ((ADDRESS_BITS - ARENA_BITS + 2) / 3)
1374 : : #else
1375 : : #define INTERIOR_BITS 0
1376 : : #endif
1377 : :
1378 : : #define MAP_TOP_BITS INTERIOR_BITS
1379 : : #define MAP_TOP_LENGTH (1 << MAP_TOP_BITS)
1380 : : #define MAP_TOP_MASK (MAP_TOP_LENGTH - 1)
1381 : :
1382 : : #define MAP_MID_BITS INTERIOR_BITS
1383 : : #define MAP_MID_LENGTH (1 << MAP_MID_BITS)
1384 : : #define MAP_MID_MASK (MAP_MID_LENGTH - 1)
1385 : :
1386 : : #define MAP_BOT_BITS (ADDRESS_BITS - ARENA_BITS - 2*INTERIOR_BITS)
1387 : : #define MAP_BOT_LENGTH (1 << MAP_BOT_BITS)
1388 : : #define MAP_BOT_MASK (MAP_BOT_LENGTH - 1)
1389 : :
1390 : : #define MAP_BOT_SHIFT ARENA_BITS
1391 : : #define MAP_MID_SHIFT (MAP_BOT_BITS + MAP_BOT_SHIFT)
1392 : : #define MAP_TOP_SHIFT (MAP_MID_BITS + MAP_MID_SHIFT)
1393 : :
1394 : : #define AS_UINT(p) ((uintptr_t)(p))
1395 : : #define MAP_BOT_INDEX(p) ((AS_UINT(p) >> MAP_BOT_SHIFT) & MAP_BOT_MASK)
1396 : : #define MAP_MID_INDEX(p) ((AS_UINT(p) >> MAP_MID_SHIFT) & MAP_MID_MASK)
1397 : : #define MAP_TOP_INDEX(p) ((AS_UINT(p) >> MAP_TOP_SHIFT) & MAP_TOP_MASK)
1398 : :
1399 : : #if IGNORE_BITS > 0
1400 : : /* Return the ignored part of the pointer address. Those bits should be same
1401 : : * for all valid pointers if IGNORE_BITS is set correctly.
1402 : : */
1403 : : #define HIGH_BITS(p) (AS_UINT(p) >> ADDRESS_BITS)
1404 : : #else
1405 : : #define HIGH_BITS(p) 0
1406 : : #endif
1407 : :
1408 : :
1409 : : /* This is the leaf of the radix tree. See arena_map_mark_used() for the
1410 : : * meaning of these members. */
1411 : : typedef struct {
1412 : : int32_t tail_hi;
1413 : : int32_t tail_lo;
1414 : : } arena_coverage_t;
1415 : :
1416 : : typedef struct arena_map_bot {
1417 : : /* The members tail_hi and tail_lo are accessed together. So, it
1418 : : * better to have them as an array of structs, rather than two
1419 : : * arrays.
1420 : : */
1421 : : arena_coverage_t arenas[MAP_BOT_LENGTH];
1422 : : } arena_map_bot_t;
1423 : :
1424 : : #ifdef USE_INTERIOR_NODES
1425 : : typedef struct arena_map_mid {
1426 : : struct arena_map_bot *ptrs[MAP_MID_LENGTH];
1427 : : } arena_map_mid_t;
1428 : :
1429 : : typedef struct arena_map_top {
1430 : : struct arena_map_mid *ptrs[MAP_TOP_LENGTH];
1431 : : } arena_map_top_t;
1432 : : #endif
1433 : :
1434 : : /* The root of radix tree. Note that by initializing like this, the memory
1435 : : * should be in the BSS. The OS will only memory map pages as the MAP_MID
1436 : : * nodes get used (OS pages are demand loaded as needed).
1437 : : */
1438 : : #ifdef USE_INTERIOR_NODES
1439 : : static arena_map_top_t arena_map_root;
1440 : : /* accounting for number of used interior nodes */
1441 : : static int arena_map_mid_count;
1442 : : static int arena_map_bot_count;
1443 : : #else
1444 : : static arena_map_bot_t arena_map_root;
1445 : : #endif
1446 : :
1447 : : /* Return a pointer to a bottom tree node, return NULL if it doesn't exist or
1448 : : * it cannot be created */
1449 : : static Py_ALWAYS_INLINE arena_map_bot_t *
1450 : : arena_map_get(block *p, int create)
1451 : : {
1452 : : #ifdef USE_INTERIOR_NODES
1453 : : /* sanity check that IGNORE_BITS is correct */
1454 : : assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root));
1455 : 1081830259 : int i1 = MAP_TOP_INDEX(p);
1456 : 1081830259 : if (arena_map_root.ptrs[i1] == NULL) {
1457 [ - - - + : 2925 : if (!create) {
- - ]
1458 : 0 : return NULL;
1459 : : }
1460 : 2925 : arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t));
1461 [ - - - + : 2925 : if (n == NULL) {
- - ]
1462 : 0 : return NULL;
1463 : : }
1464 : 2925 : arena_map_root.ptrs[i1] = n;
1465 : 2925 : arena_map_mid_count++;
1466 : : }
1467 : 1081830259 : int i2 = MAP_MID_INDEX(p);
1468 [ + + + + : 1081830259 : if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) {
- + ]
1469 [ + - - + : 31135603 : if (!create) {
- - ]
1470 : 31132655 : return NULL;
1471 : : }
1472 : 2948 : arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t));
1473 [ - - - + : 2948 : if (n == NULL) {
- - ]
1474 : 0 : return NULL;
1475 : : }
1476 : 2948 : arena_map_root.ptrs[i1]->ptrs[i2] = n;
1477 : 2948 : arena_map_bot_count++;
1478 : : }
1479 : 1050697604 : return arena_map_root.ptrs[i1]->ptrs[i2];
1480 : : #else
1481 : : return &arena_map_root;
1482 : : #endif
1483 : : }
1484 : :
1485 : :
1486 : : /* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw
1487 : : * away 24 bits of the address. That reduces the space requirement of
1488 : : * the tree compared to similar radix tree page-map schemes. In
1489 : : * exchange for slashing the space requirement, it needs more
1490 : : * computation to check an address.
1491 : : *
1492 : : * Tracking coverage is done by "ideal" arena address. It is easier to
1493 : : * explain in decimal so let's say that the arena size is 100 bytes.
1494 : : * Then, ideal addresses are 100, 200, 300, etc. For checking if a
1495 : : * pointer address is inside an actual arena, we have to check two ideal
1496 : : * arena addresses. E.g. if pointer is 357, we need to check 200 and
1497 : : * 300. In the rare case that an arena is aligned in the ideal way
1498 : : * (e.g. base address of arena is 200) then we only have to check one
1499 : : * ideal address.
1500 : : *
1501 : : * The tree nodes for 200 and 300 both store the address of arena.
1502 : : * There are two cases: the arena starts at a lower ideal arena and
1503 : : * extends to this one, or the arena starts in this arena and extends to
1504 : : * the next ideal arena. The tail_lo and tail_hi members correspond to
1505 : : * these two cases.
1506 : : */
1507 : :
1508 : :
1509 : : /* mark or unmark addresses covered by arena */
1510 : : static int
1511 : 22900 : arena_map_mark_used(uintptr_t arena_base, int is_used)
1512 : : {
1513 : : /* sanity check that IGNORE_BITS is correct */
1514 : : assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root));
1515 [ + + ]: 22900 : arena_map_bot_t *n_hi = arena_map_get((block *)arena_base, is_used);
1516 [ - + ]: 22900 : if (n_hi == NULL) {
1517 : : assert(is_used); /* otherwise node should already exist */
1518 : 0 : return 0; /* failed to allocate space for node */
1519 : : }
1520 : 22900 : int i3 = MAP_BOT_INDEX((block *)arena_base);
1521 : 22900 : int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK);
1522 [ + + ]: 22900 : if (tail == 0) {
1523 : : /* is ideal arena address */
1524 [ + + ]: 7294 : n_hi->arenas[i3].tail_hi = is_used ? -1 : 0;
1525 : : }
1526 : : else {
1527 : : /* arena_base address is not ideal (aligned to arena size) and
1528 : : * so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node
1529 : : * for the next arena. Note that it might be in different MAP_TOP
1530 : : * and MAP_MID nodes as well so we need to call arena_map_get()
1531 : : * again (do the full tree traversal).
1532 : : */
1533 [ + + ]: 15606 : n_hi->arenas[i3].tail_hi = is_used ? tail : 0;
1534 : 15606 : uintptr_t arena_base_next = arena_base + ARENA_SIZE;
1535 : : /* If arena_base is a legit arena address, so is arena_base_next - 1
1536 : : * (last address in arena). If arena_base_next overflows then it
1537 : : * must overflow to 0. However, that would mean arena_base was
1538 : : * "ideal" and we should not be in this case. */
1539 : : assert(arena_base < arena_base_next);
1540 [ - + ]: 15606 : arena_map_bot_t *n_lo = arena_map_get((block *)arena_base_next, is_used);
1541 [ - + ]: 15606 : if (n_lo == NULL) {
1542 : : assert(is_used); /* otherwise should already exist */
1543 : 0 : n_hi->arenas[i3].tail_hi = 0;
1544 : 0 : return 0; /* failed to allocate space for node */
1545 : : }
1546 : 15606 : int i3_next = MAP_BOT_INDEX(arena_base_next);
1547 [ + + ]: 15606 : n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0;
1548 : : }
1549 : 22900 : return 1;
1550 : : }
1551 : :
1552 : : /* Return true if 'p' is a pointer inside an obmalloc arena.
1553 : : * _PyObject_Free() calls this so it needs to be very fast. */
1554 : : static int
1555 [ - + ]: 1081791753 : arena_map_is_used(block *p)
1556 : : {
1557 : 1081791753 : arena_map_bot_t *n = arena_map_get(p, 0);
1558 [ + + ]: 1081791753 : if (n == NULL) {
1559 : 31132655 : return 0;
1560 : : }
1561 : 1050659098 : int i3 = MAP_BOT_INDEX(p);
1562 : : /* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */
1563 : 1050659098 : int32_t hi = n->arenas[i3].tail_hi;
1564 : 1050659098 : int32_t lo = n->arenas[i3].tail_lo;
1565 : 1050659098 : int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK);
1566 [ + + + + : 1050659098 : return (tail < lo) || (tail >= hi && hi != 0);
+ + ]
1567 : : }
1568 : :
1569 : : /* end of radix tree logic */
1570 : : /*==========================================================================*/
1571 : : #endif /* WITH_PYMALLOC_RADIX_TREE */
1572 : :
1573 : :
1574 : : /* Allocate a new arena. If we run out of memory, return NULL. Else
1575 : : * allocate a new arena, and return the address of an arena_object
1576 : : * describing the new arena. It's expected that the caller will set
1577 : : * `usable_arenas` to the return value.
1578 : : */
1579 : : static struct arena_object*
1580 : 17217 : new_arena(void)
1581 : : {
1582 : : struct arena_object* arenaobj;
1583 : : uint excess; /* number of bytes above pool alignment */
1584 : : void *address;
1585 : : static int debug_stats = -1;
1586 : :
1587 [ + + ]: 17217 : if (debug_stats == -1) {
1588 : 2925 : const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
1589 [ - + - - ]: 2925 : debug_stats = (opt != NULL && *opt != '\0');
1590 : : }
1591 [ - + ]: 17217 : if (debug_stats) {
1592 : 0 : _PyObject_DebugMallocStats(stderr);
1593 : : }
1594 : :
1595 [ + + ]: 17217 : if (unused_arena_objects == NULL) {
1596 : : uint i;
1597 : : uint numarenas;
1598 : : size_t nbytes;
1599 : :
1600 : : /* Double the number of arena objects on each allocation.
1601 : : * Note that it's possible for `numarenas` to overflow.
1602 : : */
1603 [ + + ]: 2983 : numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
1604 [ - + ]: 2983 : if (numarenas <= maxarenas)
1605 : 0 : return NULL; /* overflow */
1606 : : #if SIZEOF_SIZE_T <= SIZEOF_INT
1607 : : if (numarenas > SIZE_MAX / sizeof(*arenas))
1608 : : return NULL; /* overflow */
1609 : : #endif
1610 : 2983 : nbytes = numarenas * sizeof(*arenas);
1611 : 2983 : arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
1612 [ - + ]: 2983 : if (arenaobj == NULL)
1613 : 0 : return NULL;
1614 : 2983 : arenas = arenaobj;
1615 : :
1616 : : /* We might need to fix pointers that were copied. However,
1617 : : * new_arena only gets called when all the pages in the
1618 : : * previous arenas are full. Thus, there are *no* pointers
1619 : : * into the old array. Thus, we don't have to worry about
1620 : : * invalid pointers. Just to be sure, some asserts:
1621 : : */
1622 : : assert(usable_arenas == NULL);
1623 : : assert(unused_arena_objects == NULL);
1624 : :
1625 : : /* Put the new arenas on the unused_arena_objects list. */
1626 [ + + ]: 51655 : for (i = maxarenas; i < numarenas; ++i) {
1627 : 48672 : arenas[i].address = 0; /* mark as unassociated */
1628 : 48672 : arenas[i].nextarena = i < numarenas - 1 ?
1629 [ + + ]: 48672 : &arenas[i+1] : NULL;
1630 : : }
1631 : :
1632 : : /* Update globals. */
1633 : 2983 : unused_arena_objects = &arenas[maxarenas];
1634 : 2983 : maxarenas = numarenas;
1635 : : }
1636 : :
1637 : : /* Take the next available arena object off the head of the list. */
1638 : : assert(unused_arena_objects != NULL);
1639 : 17217 : arenaobj = unused_arena_objects;
1640 : 17217 : unused_arena_objects = arenaobj->nextarena;
1641 : : assert(arenaobj->address == 0);
1642 : 17217 : address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
1643 : : #if WITH_PYMALLOC_RADIX_TREE
1644 [ + - ]: 17217 : if (address != NULL) {
1645 [ - + ]: 17217 : if (!arena_map_mark_used((uintptr_t)address, 1)) {
1646 : : /* marking arena in radix tree failed, abort */
1647 : 0 : _PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE);
1648 : 0 : address = NULL;
1649 : : }
1650 : : }
1651 : : #endif
1652 [ - + ]: 17217 : if (address == NULL) {
1653 : : /* The allocation failed: return NULL after putting the
1654 : : * arenaobj back.
1655 : : */
1656 : 0 : arenaobj->nextarena = unused_arena_objects;
1657 : 0 : unused_arena_objects = arenaobj;
1658 : 0 : return NULL;
1659 : : }
1660 : 17217 : arenaobj->address = (uintptr_t)address;
1661 : :
1662 : 17217 : ++narenas_currently_allocated;
1663 : 17217 : ++ntimes_arena_allocated;
1664 [ + + ]: 17217 : if (narenas_currently_allocated > narenas_highwater)
1665 : 14657 : narenas_highwater = narenas_currently_allocated;
1666 : 17217 : arenaobj->freepools = NULL;
1667 : : /* pool_address <- first pool-aligned address in the arena
1668 : : nfreepools <- number of whole pools that fit after alignment */
1669 : 17217 : arenaobj->pool_address = (block*)arenaobj->address;
1670 : 17217 : arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
1671 : 17217 : excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
1672 [ + + ]: 17217 : if (excess != 0) {
1673 : 8862 : --arenaobj->nfreepools;
1674 : 8862 : arenaobj->pool_address += POOL_SIZE - excess;
1675 : : }
1676 : 17217 : arenaobj->ntotalpools = arenaobj->nfreepools;
1677 : :
1678 : 17217 : return arenaobj;
1679 : : }
1680 : :
1681 : :
1682 : :
1683 : : #if WITH_PYMALLOC_RADIX_TREE
1684 : : /* Return true if and only if P is an address that was allocated by
1685 : : pymalloc. When the radix tree is used, 'poolp' is unused.
1686 : : */
1687 : : static bool
1688 : 1081791753 : address_in_range(void *p, poolp Py_UNUSED(pool))
1689 : : {
1690 : 1081791753 : return arena_map_is_used(p);
1691 : : }
1692 : : #else
1693 : : /*
1694 : : address_in_range(P, POOL)
1695 : :
1696 : : Return true if and only if P is an address that was allocated by pymalloc.
1697 : : POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
1698 : : (the caller is asked to compute this because the macro expands POOL more than
1699 : : once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
1700 : : variable and pass the latter to the macro; because address_in_range is
1701 : : called on every alloc/realloc/free, micro-efficiency is important here).
1702 : :
1703 : : Tricky: Let B be the arena base address associated with the pool, B =
1704 : : arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
1705 : :
1706 : : B <= P < B + ARENA_SIZE
1707 : :
1708 : : Subtracting B throughout, this is true iff
1709 : :
1710 : : 0 <= P-B < ARENA_SIZE
1711 : :
1712 : : By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
1713 : :
1714 : : Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
1715 : : before the first arena has been allocated. `arenas` is still NULL in that
1716 : : case. We're relying on that maxarenas is also 0 in that case, so that
1717 : : (POOL)->arenaindex < maxarenas must be false, saving us from trying to index
1718 : : into a NULL arenas.
1719 : :
1720 : : Details: given P and POOL, the arena_object corresponding to P is AO =
1721 : : arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
1722 : : stores, etc), POOL is the correct address of P's pool, AO.address is the
1723 : : correct base address of the pool's arena, and P must be within ARENA_SIZE of
1724 : : AO.address. In addition, AO.address is not 0 (no arena can start at address 0
1725 : : (NULL)). Therefore address_in_range correctly reports that obmalloc
1726 : : controls P.
1727 : :
1728 : : Now suppose obmalloc does not control P (e.g., P was obtained via a direct
1729 : : call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
1730 : : in this case -- it may even be uninitialized trash. If the trash arenaindex
1731 : : is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
1732 : : control P.
1733 : :
1734 : : Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
1735 : : allocated arena, obmalloc controls all the memory in slice AO.address :
1736 : : AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
1737 : : so P doesn't lie in that slice, so the macro correctly reports that P is not
1738 : : controlled by obmalloc.
1739 : :
1740 : : Finally, if P is not controlled by obmalloc and AO corresponds to an unused
1741 : : arena_object (one not currently associated with an allocated arena),
1742 : : AO.address is 0, and the second test in the macro reduces to:
1743 : :
1744 : : P < ARENA_SIZE
1745 : :
1746 : : If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
1747 : : that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
1748 : : of the test still passes, and the third clause (AO.address != 0) is necessary
1749 : : to get the correct result: AO.address is 0 in this case, so the macro
1750 : : correctly reports that P is not controlled by obmalloc (despite that P lies in
1751 : : slice AO.address : AO.address + ARENA_SIZE).
1752 : :
1753 : : Note: The third (AO.address != 0) clause was added in Python 2.5. Before
1754 : : 2.5, arenas were never free()'ed, and an arenaindex < maxarena always
1755 : : corresponded to a currently-allocated arena, so the "P is not controlled by
1756 : : obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
1757 : : was impossible.
1758 : :
1759 : : Note that the logic is excruciating, and reading up possibly uninitialized
1760 : : memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
1761 : : creates problems for some memory debuggers. The overwhelming advantage is
1762 : : that this test determines whether an arbitrary address is controlled by
1763 : : obmalloc in a small constant time, independent of the number of arenas
1764 : : obmalloc controls. Since this test is needed at every entry point, it's
1765 : : extremely desirable that it be this fast.
1766 : : */
1767 : :
1768 : : static bool _Py_NO_SANITIZE_ADDRESS
1769 : : _Py_NO_SANITIZE_THREAD
1770 : : _Py_NO_SANITIZE_MEMORY
1771 : : address_in_range(void *p, poolp pool)
1772 : : {
1773 : : // Since address_in_range may be reading from memory which was not allocated
1774 : : // by Python, it is important that pool->arenaindex is read only once, as
1775 : : // another thread may be concurrently modifying the value without holding
1776 : : // the GIL. The following dance forces the compiler to read pool->arenaindex
1777 : : // only once.
1778 : : uint arenaindex = *((volatile uint *)&pool->arenaindex);
1779 : : return arenaindex < maxarenas &&
1780 : : (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&
1781 : : arenas[arenaindex].address != 0;
1782 : : }
1783 : :
1784 : : #endif /* !WITH_PYMALLOC_RADIX_TREE */
1785 : :
1786 : : /*==========================================================================*/
1787 : :
1788 : : // Called when freelist is exhausted. Extend the freelist if there is
1789 : : // space for a block. Otherwise, remove this pool from usedpools.
1790 : : static void
1791 : 309220801 : pymalloc_pool_extend(poolp pool, uint size)
1792 : : {
1793 [ + + ]: 309220801 : if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) {
1794 : : /* There is room for another block. */
1795 : 210950748 : pool->freeblock = (block*)pool + pool->nextoffset;
1796 : 210950748 : pool->nextoffset += INDEX2SIZE(size);
1797 : 210950748 : *(block **)(pool->freeblock) = NULL;
1798 : 210950748 : return;
1799 : : }
1800 : :
1801 : : /* Pool is full, unlink from used pools. */
1802 : : poolp next;
1803 : 98270053 : next = pool->nextpool;
1804 : 98270053 : pool = pool->prevpool;
1805 : 98270053 : next->prevpool = pool;
1806 : 98270053 : pool->nextpool = next;
1807 : : }
1808 : :
1809 : : /* called when pymalloc_alloc can not allocate a block from usedpool.
1810 : : * This function takes new pool and allocate a block from it.
1811 : : */
1812 : : static void*
1813 : 2243453 : allocate_from_new_pool(uint size)
1814 : : {
1815 : : /* There isn't a pool of the right size class immediately
1816 : : * available: use a free pool.
1817 : : */
1818 [ + + ]: 2243453 : if (UNLIKELY(usable_arenas == NULL)) {
1819 : : /* No arena has a free pool: allocate a new arena. */
1820 : : #ifdef WITH_MEMORY_LIMITS
1821 : : if (narenas_currently_allocated >= MAX_ARENAS) {
1822 : : return NULL;
1823 : : }
1824 : : #endif
1825 : 17217 : usable_arenas = new_arena();
1826 [ - + ]: 17217 : if (usable_arenas == NULL) {
1827 : 0 : return NULL;
1828 : : }
1829 : 17217 : usable_arenas->nextarena = usable_arenas->prevarena = NULL;
1830 : : assert(nfp2lasta[usable_arenas->nfreepools] == NULL);
1831 : 17217 : nfp2lasta[usable_arenas->nfreepools] = usable_arenas;
1832 : : }
1833 : : assert(usable_arenas->address != 0);
1834 : :
1835 : : /* This arena already had the smallest nfreepools value, so decreasing
1836 : : * nfreepools doesn't change that, and we don't need to rearrange the
1837 : : * usable_arenas list. However, if the arena becomes wholly allocated,
1838 : : * we need to remove its arena_object from usable_arenas.
1839 : : */
1840 : : assert(usable_arenas->nfreepools > 0);
1841 [ + + ]: 2243453 : if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) {
1842 : : /* It's the last of this size, so there won't be any. */
1843 : 2241640 : nfp2lasta[usable_arenas->nfreepools] = NULL;
1844 : : }
1845 : : /* If any free pools will remain, it will be the new smallest. */
1846 [ + + ]: 2243453 : if (usable_arenas->nfreepools > 1) {
1847 : : assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL);
1848 : 2203182 : nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas;
1849 : : }
1850 : :
1851 : : /* Try to get a cached free pool. */
1852 : 2243453 : poolp pool = usable_arenas->freepools;
1853 [ + + ]: 2243453 : if (LIKELY(pool != NULL)) {
1854 : : /* Unlink from cached pools. */
1855 : 1256440 : usable_arenas->freepools = pool->nextpool;
1856 : 1256440 : usable_arenas->nfreepools--;
1857 [ + + ]: 1256440 : if (UNLIKELY(usable_arenas->nfreepools == 0)) {
1858 : : /* Wholly allocated: remove. */
1859 : : assert(usable_arenas->freepools == NULL);
1860 : : assert(usable_arenas->nextarena == NULL ||
1861 : : usable_arenas->nextarena->prevarena ==
1862 : : usable_arenas);
1863 : 26027 : usable_arenas = usable_arenas->nextarena;
1864 [ + + ]: 26027 : if (usable_arenas != NULL) {
1865 : 15632 : usable_arenas->prevarena = NULL;
1866 : : assert(usable_arenas->address != 0);
1867 : : }
1868 : : }
1869 : : else {
1870 : : /* nfreepools > 0: it must be that freepools
1871 : : * isn't NULL, or that we haven't yet carved
1872 : : * off all the arena's pools for the first
1873 : : * time.
1874 : : */
1875 : : assert(usable_arenas->freepools != NULL ||
1876 : : usable_arenas->pool_address <=
1877 : : (block*)usable_arenas->address +
1878 : : ARENA_SIZE - POOL_SIZE);
1879 : : }
1880 : : }
1881 : : else {
1882 : : /* Carve off a new pool. */
1883 : : assert(usable_arenas->nfreepools > 0);
1884 : : assert(usable_arenas->freepools == NULL);
1885 : 987013 : pool = (poolp)usable_arenas->pool_address;
1886 : : assert((block*)pool <= (block*)usable_arenas->address +
1887 : : ARENA_SIZE - POOL_SIZE);
1888 : 987013 : pool->arenaindex = (uint)(usable_arenas - arenas);
1889 : : assert(&arenas[pool->arenaindex] == usable_arenas);
1890 : 987013 : pool->szidx = DUMMY_SIZE_IDX;
1891 : 987013 : usable_arenas->pool_address += POOL_SIZE;
1892 : 987013 : --usable_arenas->nfreepools;
1893 : :
1894 [ + + ]: 987013 : if (usable_arenas->nfreepools == 0) {
1895 : : assert(usable_arenas->nextarena == NULL ||
1896 : : usable_arenas->nextarena->prevarena ==
1897 : : usable_arenas);
1898 : : /* Unlink the arena: it is completely allocated. */
1899 : 14244 : usable_arenas = usable_arenas->nextarena;
1900 [ + + ]: 14244 : if (usable_arenas != NULL) {
1901 : 126 : usable_arenas->prevarena = NULL;
1902 : : assert(usable_arenas->address != 0);
1903 : : }
1904 : : }
1905 : : }
1906 : :
1907 : : /* Frontlink to used pools. */
1908 : : block *bp;
1909 : 2243453 : poolp next = usedpools[size + size]; /* == prev */
1910 : 2243453 : pool->nextpool = next;
1911 : 2243453 : pool->prevpool = next;
1912 : 2243453 : next->nextpool = pool;
1913 : 2243453 : next->prevpool = pool;
1914 : 2243453 : pool->ref.count = 1;
1915 [ + + ]: 2243453 : if (pool->szidx == size) {
1916 : : /* Luckily, this pool last contained blocks
1917 : : * of the same size class, so its header
1918 : : * and free list are already initialized.
1919 : : */
1920 : 997721 : bp = pool->freeblock;
1921 : : assert(bp != NULL);
1922 : 997721 : pool->freeblock = *(block **)bp;
1923 : 997721 : return bp;
1924 : : }
1925 : : /*
1926 : : * Initialize the pool header, set up the free list to
1927 : : * contain just the second block, and return the first
1928 : : * block.
1929 : : */
1930 : 1245732 : pool->szidx = size;
1931 : 1245732 : size = INDEX2SIZE(size);
1932 : 1245732 : bp = (block *)pool + POOL_OVERHEAD;
1933 : 1245732 : pool->nextoffset = POOL_OVERHEAD + (size << 1);
1934 : 1245732 : pool->maxnextoffset = POOL_SIZE - size;
1935 : 1245732 : pool->freeblock = bp + size;
1936 : 1245732 : *(block **)(pool->freeblock) = NULL;
1937 : 1245732 : return bp;
1938 : : }
1939 : :
1940 : : /* pymalloc allocator
1941 : :
1942 : : Return a pointer to newly allocated memory if pymalloc allocated memory.
1943 : :
1944 : : Return NULL if pymalloc failed to allocate the memory block: on bigger
1945 : : requests, on error in the code below (as a last chance to serve the request)
1946 : : or when the max memory limit has been reached.
1947 : : */
1948 : : static inline void*
1949 : 1054736634 : pymalloc_alloc(void *Py_UNUSED(ctx), size_t nbytes)
1950 : : {
1951 : : #ifdef WITH_VALGRIND
1952 : : if (UNLIKELY(running_on_valgrind == -1)) {
1953 : : running_on_valgrind = RUNNING_ON_VALGRIND;
1954 : : }
1955 : : if (UNLIKELY(running_on_valgrind)) {
1956 : : return NULL;
1957 : : }
1958 : : #endif
1959 : :
1960 [ + + ]: 1054736634 : if (UNLIKELY(nbytes == 0)) {
1961 : 2818064 : return NULL;
1962 : : }
1963 [ + + ]: 1051918570 : if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {
1964 : 23739105 : return NULL;
1965 : : }
1966 : :
1967 : 1028179465 : uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
1968 : 1028179465 : poolp pool = usedpools[size + size];
1969 : : block *bp;
1970 : :
1971 [ + + ]: 1028179465 : if (LIKELY(pool != pool->nextpool)) {
1972 : : /*
1973 : : * There is a used pool for this size class.
1974 : : * Pick up the head block of its free list.
1975 : : */
1976 : 1025936012 : ++pool->ref.count;
1977 : 1025936012 : bp = pool->freeblock;
1978 : : assert(bp != NULL);
1979 : :
1980 [ + + ]: 1025936012 : if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {
1981 : : // Reached the end of the free list, try to extend it.
1982 : 309220801 : pymalloc_pool_extend(pool, size);
1983 : : }
1984 : : }
1985 : : else {
1986 : : /* There isn't a pool of the right size class immediately
1987 : : * available: use a free pool.
1988 : : */
1989 : 2243453 : bp = allocate_from_new_pool(size);
1990 : : }
1991 : :
1992 : 1028179465 : return (void *)bp;
1993 : : }
1994 : :
1995 : :
1996 : : static void *
1997 : 980628605 : _PyObject_Malloc(void *ctx, size_t nbytes)
1998 : : {
1999 : 980628605 : void* ptr = pymalloc_alloc(ctx, nbytes);
2000 [ + + ]: 980628605 : if (LIKELY(ptr != NULL)) {
2001 : 956881149 : return ptr;
2002 : : }
2003 : :
2004 : 23747456 : ptr = PyMem_RawMalloc(nbytes);
2005 [ + + ]: 23747456 : if (ptr != NULL) {
2006 : 23747449 : raw_allocated_blocks++;
2007 : : }
2008 : 23747456 : return ptr;
2009 : : }
2010 : :
2011 : :
2012 : : static void *
2013 : 74108029 : _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
2014 : : {
2015 : : assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
2016 : 74108029 : size_t nbytes = nelem * elsize;
2017 : :
2018 : 74108029 : void* ptr = pymalloc_alloc(ctx, nbytes);
2019 [ + + ]: 74108029 : if (LIKELY(ptr != NULL)) {
2020 : 71298316 : memset(ptr, 0, nbytes);
2021 : 71298316 : return ptr;
2022 : : }
2023 : :
2024 : 2809713 : ptr = PyMem_RawCalloc(nelem, elsize);
2025 [ + - ]: 2809713 : if (ptr != NULL) {
2026 : 2809713 : raw_allocated_blocks++;
2027 : : }
2028 : 2809713 : return ptr;
2029 : : }
2030 : :
2031 : :
2032 : : static void
2033 : 98268960 : insert_to_usedpool(poolp pool)
2034 : : {
2035 : : assert(pool->ref.count > 0); /* else the pool is empty */
2036 : :
2037 : 98268960 : uint size = pool->szidx;
2038 : 98268960 : poolp next = usedpools[size + size];
2039 : 98268960 : poolp prev = next->prevpool;
2040 : :
2041 : : /* insert pool before next: prev <-> pool <-> next */
2042 : 98268960 : pool->nextpool = next;
2043 : 98268960 : pool->prevpool = prev;
2044 : 98268960 : next->prevpool = pool;
2045 : 98268960 : prev->nextpool = pool;
2046 : 98268960 : }
2047 : :
2048 : : static void
2049 : 2080616 : insert_to_freepool(poolp pool)
2050 : : {
2051 : 2080616 : poolp next = pool->nextpool;
2052 : 2080616 : poolp prev = pool->prevpool;
2053 : 2080616 : next->prevpool = prev;
2054 : 2080616 : prev->nextpool = next;
2055 : :
2056 : : /* Link the pool to freepools. This is a singly-linked
2057 : : * list, and pool->prevpool isn't used there.
2058 : : */
2059 : 2080616 : struct arena_object *ao = &arenas[pool->arenaindex];
2060 : 2080616 : pool->nextpool = ao->freepools;
2061 : 2080616 : ao->freepools = pool;
2062 : 2080616 : uint nf = ao->nfreepools;
2063 : : /* If this is the rightmost arena with this number of free pools,
2064 : : * nfp2lasta[nf] needs to change. Caution: if nf is 0, there
2065 : : * are no arenas in usable_arenas with that value.
2066 : : */
2067 : 2080616 : struct arena_object* lastnf = nfp2lasta[nf];
2068 : : assert((nf == 0 && lastnf == NULL) ||
2069 : : (nf > 0 &&
2070 : : lastnf != NULL &&
2071 : : lastnf->nfreepools == nf &&
2072 : : (lastnf->nextarena == NULL ||
2073 : : nf < lastnf->nextarena->nfreepools)));
2074 [ + + ]: 2080616 : if (lastnf == ao) { /* it is the rightmost */
2075 : 1970745 : struct arena_object* p = ao->prevarena;
2076 [ + + + + ]: 1970745 : nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL;
2077 : : }
2078 : 2080616 : ao->nfreepools = ++nf;
2079 : :
2080 : : /* All the rest is arena management. We just freed
2081 : : * a pool, and there are 4 cases for arena mgmt:
2082 : : * 1. If all the pools are free, return the arena to
2083 : : * the system free(). Except if this is the last
2084 : : * arena in the list, keep it to avoid thrashing:
2085 : : * keeping one wholly free arena in the list avoids
2086 : : * pathological cases where a simple loop would
2087 : : * otherwise provoke needing to allocate and free an
2088 : : * arena on every iteration. See bpo-37257.
2089 : : * 2. If this is the only free pool in the arena,
2090 : : * add the arena back to the `usable_arenas` list.
2091 : : * 3. If the "next" arena has a smaller count of free
2092 : : * pools, we have to "slide this arena right" to
2093 : : * restore that usable_arenas is sorted in order of
2094 : : * nfreepools.
2095 : : * 4. Else there's nothing more to do.
2096 : : */
2097 [ + + + + ]: 2080616 : if (nf == ao->ntotalpools && ao->nextarena != NULL) {
2098 : : /* Case 1. First unlink ao from usable_arenas.
2099 : : */
2100 : : assert(ao->prevarena == NULL ||
2101 : : ao->prevarena->address != 0);
2102 : : assert(ao ->nextarena == NULL ||
2103 : : ao->nextarena->address != 0);
2104 : :
2105 : : /* Fix the pointer in the prevarena, or the
2106 : : * usable_arenas pointer.
2107 : : */
2108 [ + + ]: 5683 : if (ao->prevarena == NULL) {
2109 : 924 : usable_arenas = ao->nextarena;
2110 : : assert(usable_arenas == NULL ||
2111 : : usable_arenas->address != 0);
2112 : : }
2113 : : else {
2114 : : assert(ao->prevarena->nextarena == ao);
2115 : 4759 : ao->prevarena->nextarena =
2116 : 4759 : ao->nextarena;
2117 : : }
2118 : : /* Fix the pointer in the nextarena. */
2119 [ + - ]: 5683 : if (ao->nextarena != NULL) {
2120 : : assert(ao->nextarena->prevarena == ao);
2121 : 5683 : ao->nextarena->prevarena =
2122 : 5683 : ao->prevarena;
2123 : : }
2124 : : /* Record that this arena_object slot is
2125 : : * available to be reused.
2126 : : */
2127 : 5683 : ao->nextarena = unused_arena_objects;
2128 : 5683 : unused_arena_objects = ao;
2129 : :
2130 : : #if WITH_PYMALLOC_RADIX_TREE
2131 : : /* mark arena region as not under control of obmalloc */
2132 : 5683 : arena_map_mark_used(ao->address, 0);
2133 : : #endif
2134 : :
2135 : : /* Free the entire arena. */
2136 : 5683 : _PyObject_Arena.free(_PyObject_Arena.ctx,
2137 : 5683 : (void *)ao->address, ARENA_SIZE);
2138 : 5683 : ao->address = 0; /* mark unassociated */
2139 : 5683 : --narenas_currently_allocated;
2140 : :
2141 : 5683 : return;
2142 : : }
2143 : :
2144 [ + + ]: 2074933 : if (nf == 1) {
2145 : : /* Case 2. Put ao at the head of
2146 : : * usable_arenas. Note that because
2147 : : * ao->nfreepools was 0 before, ao isn't
2148 : : * currently on the usable_arenas list.
2149 : : */
2150 : 40258 : ao->nextarena = usable_arenas;
2151 : 40258 : ao->prevarena = NULL;
2152 [ + + ]: 40258 : if (usable_arenas)
2153 : 30037 : usable_arenas->prevarena = ao;
2154 : 40258 : usable_arenas = ao;
2155 : : assert(usable_arenas->address != 0);
2156 [ + + ]: 40258 : if (nfp2lasta[1] == NULL) {
2157 : 36220 : nfp2lasta[1] = ao;
2158 : : }
2159 : :
2160 : 40258 : return;
2161 : : }
2162 : :
2163 : : /* If this arena is now out of order, we need to keep
2164 : : * the list sorted. The list is kept sorted so that
2165 : : * the "most full" arenas are used first, which allows
2166 : : * the nearly empty arenas to be completely freed. In
2167 : : * a few un-scientific tests, it seems like this
2168 : : * approach allowed a lot more memory to be freed.
2169 : : */
2170 : : /* If this is the only arena with nf, record that. */
2171 [ + + ]: 2034675 : if (nfp2lasta[nf] == NULL) {
2172 : 1944163 : nfp2lasta[nf] = ao;
2173 : : } /* else the rightmost with nf doesn't change */
2174 : : /* If this was the rightmost of the old size, it remains in place. */
2175 [ + + ]: 2034675 : if (ao == lastnf) {
2176 : : /* Case 4. Nothing to do. */
2177 : 1967201 : return;
2178 : : }
2179 : : /* If ao were the only arena in the list, the last block would have
2180 : : * gotten us out.
2181 : : */
2182 : : assert(ao->nextarena != NULL);
2183 : :
2184 : : /* Case 3: We have to move the arena towards the end of the list,
2185 : : * because it has more free pools than the arena to its right. It needs
2186 : : * to move to follow lastnf.
2187 : : * First unlink ao from usable_arenas.
2188 : : */
2189 [ + + ]: 67474 : if (ao->prevarena != NULL) {
2190 : : /* ao isn't at the head of the list */
2191 : : assert(ao->prevarena->nextarena == ao);
2192 : 56363 : ao->prevarena->nextarena = ao->nextarena;
2193 : : }
2194 : : else {
2195 : : /* ao is at the head of the list */
2196 : : assert(usable_arenas == ao);
2197 : 11111 : usable_arenas = ao->nextarena;
2198 : : }
2199 : 67474 : ao->nextarena->prevarena = ao->prevarena;
2200 : : /* And insert after lastnf. */
2201 : 67474 : ao->prevarena = lastnf;
2202 : 67474 : ao->nextarena = lastnf->nextarena;
2203 [ + + ]: 67474 : if (ao->nextarena != NULL) {
2204 : 63431 : ao->nextarena->prevarena = ao;
2205 : : }
2206 : 67474 : lastnf->nextarena = ao;
2207 : : /* Verify that the swaps worked. */
2208 : : assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);
2209 : : assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);
2210 : : assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);
2211 : : assert((usable_arenas == ao && ao->prevarena == NULL)
2212 : : || ao->prevarena->nextarena == ao);
2213 : : }
2214 : :
2215 : : /* Free a memory block allocated by pymalloc_alloc().
2216 : : Return 1 if it was freed.
2217 : : Return 0 if the block was not allocated by pymalloc_alloc(). */
2218 : : static inline int
2219 : 1051966313 : pymalloc_free(void *Py_UNUSED(ctx), void *p)
2220 : : {
2221 : : assert(p != NULL);
2222 : :
2223 : : #ifdef WITH_VALGRIND
2224 : : if (UNLIKELY(running_on_valgrind > 0)) {
2225 : : return 0;
2226 : : }
2227 : : #endif
2228 : :
2229 : 1051966313 : poolp pool = POOL_ADDR(p);
2230 [ + + ]: 1051966313 : if (UNLIKELY(!address_in_range(p, pool))) {
2231 : 26471372 : return 0;
2232 : : }
2233 : : /* We allocated this address. */
2234 : :
2235 : : /* Link p to the start of the pool's freeblock list. Since
2236 : : * the pool had at least the p block outstanding, the pool
2237 : : * wasn't empty (so it's already in a usedpools[] list, or
2238 : : * was full and is in no list -- it's not in the freeblocks
2239 : : * list in any case).
2240 : : */
2241 : : assert(pool->ref.count > 0); /* else it was empty */
2242 : 1025494941 : block *lastfree = pool->freeblock;
2243 : 1025494941 : *(block **)p = lastfree;
2244 : 1025494941 : pool->freeblock = (block *)p;
2245 : 1025494941 : pool->ref.count--;
2246 : :
2247 [ + + ]: 1025494941 : if (UNLIKELY(lastfree == NULL)) {
2248 : : /* Pool was full, so doesn't currently live in any list:
2249 : : * link it to the front of the appropriate usedpools[] list.
2250 : : * This mimics LRU pool usage for new allocations and
2251 : : * targets optimal filling when several pools contain
2252 : : * blocks of the same size class.
2253 : : */
2254 : 98268960 : insert_to_usedpool(pool);
2255 : 98268960 : return 1;
2256 : : }
2257 : :
2258 : : /* freeblock wasn't NULL, so the pool wasn't full,
2259 : : * and the pool is in a usedpools[] list.
2260 : : */
2261 [ + + ]: 927225981 : if (LIKELY(pool->ref.count != 0)) {
2262 : : /* pool isn't empty: leave it in usedpools */
2263 : 925145365 : return 1;
2264 : : }
2265 : :
2266 : : /* Pool is now empty: unlink from usedpools, and
2267 : : * link to the front of freepools. This ensures that
2268 : : * previously freed pools will be allocated later
2269 : : * (being not referenced, they are perhaps paged out).
2270 : : */
2271 : 2080616 : insert_to_freepool(pool);
2272 : 2080616 : return 1;
2273 : : }
2274 : :
2275 : :
2276 : : static void
2277 : 1058809119 : _PyObject_Free(void *ctx, void *p)
2278 : : {
2279 : : /* PyObject_Free(NULL) has no effect */
2280 [ + + ]: 1058809119 : if (p == NULL) {
2281 : 6842806 : return;
2282 : : }
2283 : :
2284 [ + + ]: 1051966313 : if (UNLIKELY(!pymalloc_free(ctx, p))) {
2285 : : /* pymalloc didn't allocate this address */
2286 : 26471372 : PyMem_RawFree(p);
2287 : 26471372 : raw_allocated_blocks--;
2288 : : }
2289 : : }
2290 : :
2291 : :
2292 : : /* pymalloc realloc.
2293 : :
2294 : : If nbytes==0, then as the Python docs promise, we do not treat this like
2295 : : free(p), and return a non-NULL result.
2296 : :
2297 : : Return 1 if pymalloc reallocated memory and wrote the new pointer into
2298 : : newptr_p.
2299 : :
2300 : : Return 0 if pymalloc didn't allocated p. */
2301 : : static int
2302 : 29825440 : pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes)
2303 : : {
2304 : : void *bp;
2305 : : poolp pool;
2306 : : size_t size;
2307 : :
2308 : : assert(p != NULL);
2309 : :
2310 : : #ifdef WITH_VALGRIND
2311 : : /* Treat running_on_valgrind == -1 the same as 0 */
2312 : : if (UNLIKELY(running_on_valgrind > 0)) {
2313 : : return 0;
2314 : : }
2315 : : #endif
2316 : :
2317 : 29825440 : pool = POOL_ADDR(p);
2318 [ + + ]: 29825440 : if (!address_in_range(p, pool)) {
2319 : : /* pymalloc is not managing this block.
2320 : :
2321 : : If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take
2322 : : over this block. However, if we do, we need to copy the valid data
2323 : : from the C-managed block to one of our blocks, and there's no
2324 : : portable way to know how much of the memory space starting at p is
2325 : : valid.
2326 : :
2327 : : As bug 1185883 pointed out the hard way, it's possible that the
2328 : : C-managed block is "at the end" of allocated VM space, so that a
2329 : : memory fault can occur if we try to copy nbytes bytes starting at p.
2330 : : Instead we punt: let C continue to manage this block. */
2331 : 5122497 : return 0;
2332 : : }
2333 : :
2334 : : /* pymalloc is in charge of this block */
2335 : 24702943 : size = INDEX2SIZE(pool->szidx);
2336 [ + + ]: 24702943 : if (nbytes <= size) {
2337 : : /* The block is staying the same or shrinking.
2338 : :
2339 : : If it's shrinking, there's a tradeoff: it costs cycles to copy the
2340 : : block to a smaller size class, but it wastes memory not to copy it.
2341 : :
2342 : : The compromise here is to copy on shrink only if at least 25% of
2343 : : size can be shaved off. */
2344 [ + + ]: 15854695 : if (4 * nbytes > 3 * size) {
2345 : : /* It's the same, or shrinking and new/old > 3/4. */
2346 : 4671042 : *newptr_p = p;
2347 : 4671042 : return 1;
2348 : : }
2349 : 11183653 : size = nbytes;
2350 : : }
2351 : :
2352 : 20031901 : bp = _PyObject_Malloc(ctx, nbytes);
2353 [ + - ]: 20031901 : if (bp != NULL) {
2354 : 20031901 : memcpy(bp, p, size);
2355 : 20031901 : _PyObject_Free(ctx, p);
2356 : : }
2357 : 20031901 : *newptr_p = bp;
2358 : 20031901 : return 1;
2359 : : }
2360 : :
2361 : :
2362 : : static void *
2363 : 50115400 : _PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)
2364 : : {
2365 : : void *ptr2;
2366 : :
2367 [ + + ]: 50115400 : if (ptr == NULL) {
2368 : 20289960 : return _PyObject_Malloc(ctx, nbytes);
2369 : : }
2370 : :
2371 [ + + ]: 29825440 : if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) {
2372 : 24702943 : return ptr2;
2373 : : }
2374 : :
2375 : 5122497 : return PyMem_RawRealloc(ptr, nbytes);
2376 : : }
2377 : :
2378 : : #else /* ! WITH_PYMALLOC */
2379 : :
2380 : : /*==========================================================================*/
2381 : : /* pymalloc not enabled: Redirect the entry points to malloc. These will
2382 : : * only be used by extensions that are compiled with pymalloc enabled. */
2383 : :
2384 : : Py_ssize_t
2385 : : _Py_GetAllocatedBlocks(void)
2386 : : {
2387 : : return 0;
2388 : : }
2389 : :
2390 : : #endif /* WITH_PYMALLOC */
2391 : :
2392 : :
2393 : : /*==========================================================================*/
2394 : : /* A x-platform debugging allocator. This doesn't manage memory directly,
2395 : : * it wraps a real allocator, adding extra debugging info to the memory blocks.
2396 : : */
2397 : :
2398 : : /* Uncomment this define to add the "serialno" field */
2399 : : /* #define PYMEM_DEBUG_SERIALNO */
2400 : :
2401 : : #ifdef PYMEM_DEBUG_SERIALNO
2402 : : static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
2403 : :
2404 : : /* serialno is always incremented via calling this routine. The point is
2405 : : * to supply a single place to set a breakpoint.
2406 : : */
2407 : : static void
2408 : : bumpserialno(void)
2409 : : {
2410 : : ++serialno;
2411 : : }
2412 : : #endif
2413 : :
2414 : : #define SST SIZEOF_SIZE_T
2415 : :
2416 : : #ifdef PYMEM_DEBUG_SERIALNO
2417 : : # define PYMEM_DEBUG_EXTRA_BYTES 4 * SST
2418 : : #else
2419 : : # define PYMEM_DEBUG_EXTRA_BYTES 3 * SST
2420 : : #endif
2421 : :
2422 : : /* Read sizeof(size_t) bytes at p as a big-endian size_t. */
2423 : : static size_t
2424 : 7213856 : read_size_t(const void *p)
2425 : : {
2426 : 7213856 : const uint8_t *q = (const uint8_t *)p;
2427 : 7213856 : size_t result = *q++;
2428 : : int i;
2429 : :
2430 [ + + ]: 57710848 : for (i = SST; --i > 0; ++q)
2431 : 50496992 : result = (result << 8) | *q;
2432 : 7213856 : return result;
2433 : : }
2434 : :
2435 : : /* Write n as a big-endian size_t, MSB at address p, LSB at
2436 : : * p + sizeof(size_t) - 1.
2437 : : */
2438 : : static void
2439 : 3629073 : write_size_t(void *p, size_t n)
2440 : : {
2441 : 3629073 : uint8_t *q = (uint8_t *)p + SST - 1;
2442 : : int i;
2443 : :
2444 [ + + ]: 32661657 : for (i = SST; --i >= 0; --q) {
2445 : 29032584 : *q = (uint8_t)(n & 0xff);
2446 : 29032584 : n >>= 8;
2447 : : }
2448 : 3629073 : }
2449 : :
2450 : : /* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and
2451 : : fills them with useful stuff, here calling the underlying malloc's result p:
2452 : :
2453 : : p[0: S]
2454 : : Number of bytes originally asked for. This is a size_t, big-endian (easier
2455 : : to read in a memory dump).
2456 : : p[S]
2457 : : API ID. See PEP 445. This is a character, but seems undocumented.
2458 : : p[S+1: 2*S]
2459 : : Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.
2460 : : p[2*S: 2*S+n]
2461 : : The requested memory, filled with copies of PYMEM_CLEANBYTE.
2462 : : Used to catch reference to uninitialized memory.
2463 : : &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
2464 : : handled the request itself.
2465 : : p[2*S+n: 2*S+n+S]
2466 : : Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.
2467 : : p[2*S+n+S: 2*S+n+2*S]
2468 : : A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
2469 : : and _PyMem_DebugRealloc.
2470 : : This is a big-endian size_t.
2471 : : If "bad memory" is detected later, the serial number gives an
2472 : : excellent way to set a breakpoint on the next run, to capture the
2473 : : instant at which this block was passed out.
2474 : :
2475 : : If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks
2476 : : for 3 * S extra bytes, and omits the last serialno field.
2477 : : */
2478 : :
2479 : : static void *
2480 : 3497542 : _PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
2481 : : {
2482 : 3497542 : debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
2483 : : uint8_t *p; /* base address of malloc'ed pad block */
2484 : : uint8_t *data; /* p + 2*SST == pointer to data bytes */
2485 : : uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
2486 : : size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */
2487 : :
2488 [ - + ]: 3497542 : if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
2489 : : /* integer overflow: can't represent total as a Py_ssize_t */
2490 : 0 : return NULL;
2491 : : }
2492 : 3497542 : total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
2493 : :
2494 : : /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]
2495 : : ^--- p ^--- data ^--- tail
2496 : : S: nbytes stored as size_t
2497 : : I: API identifier (1 byte)
2498 : : F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)
2499 : : C: Clean bytes used later to store actual data
2500 : : N: Serial number stored as size_t
2501 : :
2502 : : If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field
2503 : : is omitted. */
2504 : :
2505 [ + + ]: 3497542 : if (use_calloc) {
2506 : 57017 : p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
2507 : : }
2508 : : else {
2509 : 3440525 : p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
2510 : : }
2511 [ - + ]: 3497542 : if (p == NULL) {
2512 : 0 : return NULL;
2513 : : }
2514 : 3497542 : data = p + 2*SST;
2515 : :
2516 : : #ifdef PYMEM_DEBUG_SERIALNO
2517 : : bumpserialno();
2518 : : #endif
2519 : :
2520 : : /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
2521 : 3497542 : write_size_t(p, nbytes);
2522 : 3497542 : p[SST] = (uint8_t)api->api_id;
2523 : 3497542 : memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
2524 : :
2525 [ + + + + ]: 3497542 : if (nbytes > 0 && !use_calloc) {
2526 : 3437461 : memset(data, PYMEM_CLEANBYTE, nbytes);
2527 : : }
2528 : :
2529 : : /* at tail, write pad (SST bytes) and serialno (SST bytes) */
2530 : 3497542 : tail = data + nbytes;
2531 : 3497542 : memset(tail, PYMEM_FORBIDDENBYTE, SST);
2532 : : #ifdef PYMEM_DEBUG_SERIALNO
2533 : : write_size_t(tail + SST, serialno);
2534 : : #endif
2535 : :
2536 : 3497542 : return data;
2537 : : }
2538 : :
2539 : : static void *
2540 : 3388828 : _PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
2541 : : {
2542 : 3388828 : return _PyMem_DebugRawAlloc(0, ctx, nbytes);
2543 : : }
2544 : :
2545 : : static void *
2546 : 57017 : _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
2547 : : {
2548 : : size_t nbytes;
2549 : : assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
2550 : 57017 : nbytes = nelem * elsize;
2551 : 57017 : return _PyMem_DebugRawAlloc(1, ctx, nbytes);
2552 : : }
2553 : :
2554 : :
2555 : : /* The debug free first checks the 2*SST bytes on each end for sanity (in
2556 : : particular, that the FORBIDDENBYTEs with the api ID are still intact).
2557 : : Then fills the original bytes with PYMEM_DEADBYTE.
2558 : : Then calls the underlying free.
2559 : : */
2560 : : static void
2561 : 3545210 : _PyMem_DebugRawFree(void *ctx, void *p)
2562 : : {
2563 : : /* PyMem_Free(NULL) has no effect */
2564 [ + + ]: 3545210 : if (p == NULL) {
2565 : 69813 : return;
2566 : : }
2567 : :
2568 : 3475397 : debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
2569 : 3475397 : uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */
2570 : : size_t nbytes;
2571 : :
2572 : 3475397 : _PyMem_DebugCheckAddress(__func__, api->api_id, p);
2573 : 3475397 : nbytes = read_size_t(q);
2574 : 3475397 : nbytes += PYMEM_DEBUG_EXTRA_BYTES;
2575 : 3475397 : memset(q, PYMEM_DEADBYTE, nbytes);
2576 : 3475397 : api->alloc.free(api->alloc.ctx, q);
2577 : : }
2578 : :
2579 : :
2580 : : static void *
2581 : 183228 : _PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
2582 : : {
2583 [ + + ]: 183228 : if (p == NULL) {
2584 : 51697 : return _PyMem_DebugRawAlloc(0, ctx, nbytes);
2585 : : }
2586 : :
2587 : 131531 : debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
2588 : : uint8_t *head; /* base address of malloc'ed pad block */
2589 : : uint8_t *data; /* pointer to data bytes */
2590 : : uint8_t *r;
2591 : : uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
2592 : : size_t total; /* 2 * SST + nbytes + 2 * SST */
2593 : : size_t original_nbytes;
2594 : : #define ERASED_SIZE 64
2595 : : uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */
2596 : :
2597 : 131531 : _PyMem_DebugCheckAddress(__func__, api->api_id, p);
2598 : :
2599 : 131531 : data = (uint8_t *)p;
2600 : 131531 : head = data - 2*SST;
2601 : 131531 : original_nbytes = read_size_t(head);
2602 [ - + ]: 131531 : if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
2603 : : /* integer overflow: can't represent total as a Py_ssize_t */
2604 : 0 : return NULL;
2605 : : }
2606 : 131531 : total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
2607 : :
2608 : 131531 : tail = data + original_nbytes;
2609 : : #ifdef PYMEM_DEBUG_SERIALNO
2610 : : size_t block_serialno = read_size_t(tail + SST);
2611 : : #endif
2612 : : /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and
2613 : : ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.
2614 : : */
2615 [ + + ]: 131531 : if (original_nbytes <= sizeof(save)) {
2616 : 39775 : memcpy(save, data, original_nbytes);
2617 : 39775 : memset(data - 2 * SST, PYMEM_DEADBYTE,
2618 : : original_nbytes + PYMEM_DEBUG_EXTRA_BYTES);
2619 : : }
2620 : : else {
2621 : 91756 : memcpy(save, data, ERASED_SIZE);
2622 : 91756 : memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST);
2623 : 91756 : memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);
2624 : 91756 : memset(tail - ERASED_SIZE, PYMEM_DEADBYTE,
2625 : : ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST);
2626 : : }
2627 : :
2628 : : /* Resize and add decorations. */
2629 : 131531 : r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);
2630 [ - + ]: 131531 : if (r == NULL) {
2631 : : /* if realloc() failed: rewrite header and footer which have
2632 : : just been erased */
2633 : 0 : nbytes = original_nbytes;
2634 : : }
2635 : : else {
2636 : 131531 : head = r;
2637 : : #ifdef PYMEM_DEBUG_SERIALNO
2638 : : bumpserialno();
2639 : : block_serialno = serialno;
2640 : : #endif
2641 : : }
2642 : 131531 : data = head + 2*SST;
2643 : :
2644 : 131531 : write_size_t(head, nbytes);
2645 : 131531 : head[SST] = (uint8_t)api->api_id;
2646 : 131531 : memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
2647 : :
2648 : 131531 : tail = data + nbytes;
2649 : 131531 : memset(tail, PYMEM_FORBIDDENBYTE, SST);
2650 : : #ifdef PYMEM_DEBUG_SERIALNO
2651 : : write_size_t(tail + SST, block_serialno);
2652 : : #endif
2653 : :
2654 : : /* Restore saved bytes. */
2655 [ + + ]: 131531 : if (original_nbytes <= sizeof(save)) {
2656 : 39775 : memcpy(data, save, Py_MIN(nbytes, original_nbytes));
2657 : : }
2658 : : else {
2659 : 91756 : size_t i = original_nbytes - ERASED_SIZE;
2660 : 91756 : memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));
2661 [ + + ]: 91756 : if (nbytes > i) {
2662 : 46053 : memcpy(data + i, &save[ERASED_SIZE],
2663 : 46053 : Py_MIN(nbytes - i, ERASED_SIZE));
2664 : : }
2665 : : }
2666 : :
2667 [ - + ]: 131531 : if (r == NULL) {
2668 : 0 : return NULL;
2669 : : }
2670 : :
2671 [ + + ]: 131531 : if (nbytes > original_nbytes) {
2672 : : /* growing: mark new extra memory clean */
2673 : 72941 : memset(data + original_nbytes, PYMEM_CLEANBYTE,
2674 : : nbytes - original_nbytes);
2675 : : }
2676 : :
2677 : 131531 : return data;
2678 : : }
2679 : :
2680 : : static inline void
2681 : 6945642 : _PyMem_DebugCheckGIL(const char *func)
2682 : : {
2683 [ - + ]: 6945642 : if (!PyGILState_Check()) {
2684 : : _Py_FatalErrorFunc(func,
2685 : : "Python memory allocator called "
2686 : : "without holding the GIL");
2687 : : }
2688 : 6945642 : }
2689 : :
2690 : : static void *
2691 : 3288374 : _PyMem_DebugMalloc(void *ctx, size_t nbytes)
2692 : : {
2693 : 3288374 : _PyMem_DebugCheckGIL(__func__);
2694 : 3288374 : return _PyMem_DebugRawMalloc(ctx, nbytes);
2695 : : }
2696 : :
2697 : : static void *
2698 : 54992 : _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
2699 : : {
2700 : 54992 : _PyMem_DebugCheckGIL(__func__);
2701 : 54992 : return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
2702 : : }
2703 : :
2704 : :
2705 : : static void
2706 : 3436266 : _PyMem_DebugFree(void *ctx, void *ptr)
2707 : : {
2708 : 3436266 : _PyMem_DebugCheckGIL(__func__);
2709 : 3436266 : _PyMem_DebugRawFree(ctx, ptr);
2710 : 3436266 : }
2711 : :
2712 : :
2713 : : static void *
2714 : 166010 : _PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
2715 : : {
2716 : 166010 : _PyMem_DebugCheckGIL(__func__);
2717 : 166010 : return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
2718 : : }
2719 : :
2720 : : /* Check the forbidden bytes on both ends of the memory allocated for p.
2721 : : * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
2722 : : * and call Py_FatalError to kill the program.
2723 : : * The API id, is also checked.
2724 : : */
2725 : : static void
2726 : 3606928 : _PyMem_DebugCheckAddress(const char *func, char api, const void *p)
2727 : : {
2728 : : assert(p != NULL);
2729 : :
2730 : 3606928 : const uint8_t *q = (const uint8_t *)p;
2731 : : size_t nbytes;
2732 : : const uint8_t *tail;
2733 : : int i;
2734 : : char id;
2735 : :
2736 : : /* Check the API id */
2737 : 3606928 : id = (char)q[-SST];
2738 [ - + ]: 3606928 : if (id != api) {
2739 : 0 : _PyObject_DebugDumpAddress(p);
2740 : : _Py_FatalErrorFormat(func,
2741 : : "bad ID: Allocated using API '%c', "
2742 : : "verified using API '%c'",
2743 : : id, api);
2744 : : }
2745 : :
2746 : : /* Check the stuff at the start of p first: if there's underwrite
2747 : : * corruption, the number-of-bytes field may be nuts, and checking
2748 : : * the tail could lead to a segfault then.
2749 : : */
2750 [ + + ]: 28855424 : for (i = SST-1; i >= 1; --i) {
2751 [ - + ]: 25248496 : if (*(q-i) != PYMEM_FORBIDDENBYTE) {
2752 : 0 : _PyObject_DebugDumpAddress(p);
2753 : : _Py_FatalErrorFunc(func, "bad leading pad byte");
2754 : : }
2755 : : }
2756 : :
2757 : 3606928 : nbytes = read_size_t(q - 2*SST);
2758 : 3606928 : tail = q + nbytes;
2759 [ + + ]: 32462352 : for (i = 0; i < SST; ++i) {
2760 [ - + ]: 28855424 : if (tail[i] != PYMEM_FORBIDDENBYTE) {
2761 : 0 : _PyObject_DebugDumpAddress(p);
2762 : : _Py_FatalErrorFunc(func, "bad trailing pad byte");
2763 : : }
2764 : : }
2765 : 3606928 : }
2766 : :
2767 : : /* Display info to stderr about the memory block at p. */
2768 : : static void
2769 : 0 : _PyObject_DebugDumpAddress(const void *p)
2770 : : {
2771 : 0 : const uint8_t *q = (const uint8_t *)p;
2772 : : const uint8_t *tail;
2773 : : size_t nbytes;
2774 : : int i;
2775 : : int ok;
2776 : : char id;
2777 : :
2778 : 0 : fprintf(stderr, "Debug memory block at address p=%p:", p);
2779 [ # # ]: 0 : if (p == NULL) {
2780 : 0 : fprintf(stderr, "\n");
2781 : 0 : return;
2782 : : }
2783 : 0 : id = (char)q[-SST];
2784 : 0 : fprintf(stderr, " API '%c'\n", id);
2785 : :
2786 : 0 : nbytes = read_size_t(q - 2*SST);
2787 : 0 : fprintf(stderr, " %zu bytes originally requested\n", nbytes);
2788 : :
2789 : : /* In case this is nuts, check the leading pad bytes first. */
2790 : 0 : fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
2791 : 0 : ok = 1;
2792 [ # # ]: 0 : for (i = 1; i <= SST-1; ++i) {
2793 [ # # ]: 0 : if (*(q-i) != PYMEM_FORBIDDENBYTE) {
2794 : 0 : ok = 0;
2795 : 0 : break;
2796 : : }
2797 : : }
2798 [ # # ]: 0 : if (ok)
2799 : 0 : fputs("FORBIDDENBYTE, as expected.\n", stderr);
2800 : : else {
2801 : 0 : fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
2802 : : PYMEM_FORBIDDENBYTE);
2803 [ # # ]: 0 : for (i = SST-1; i >= 1; --i) {
2804 : 0 : const uint8_t byte = *(q-i);
2805 : 0 : fprintf(stderr, " at p-%d: 0x%02x", i, byte);
2806 [ # # ]: 0 : if (byte != PYMEM_FORBIDDENBYTE)
2807 : 0 : fputs(" *** OUCH", stderr);
2808 : 0 : fputc('\n', stderr);
2809 : : }
2810 : :
2811 : 0 : fputs(" Because memory is corrupted at the start, the "
2812 : : "count of bytes requested\n"
2813 : : " may be bogus, and checking the trailing pad "
2814 : : "bytes may segfault.\n", stderr);
2815 : : }
2816 : :
2817 : 0 : tail = q + nbytes;
2818 : 0 : fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail);
2819 : 0 : ok = 1;
2820 [ # # ]: 0 : for (i = 0; i < SST; ++i) {
2821 [ # # ]: 0 : if (tail[i] != PYMEM_FORBIDDENBYTE) {
2822 : 0 : ok = 0;
2823 : 0 : break;
2824 : : }
2825 : : }
2826 [ # # ]: 0 : if (ok)
2827 : 0 : fputs("FORBIDDENBYTE, as expected.\n", stderr);
2828 : : else {
2829 : 0 : fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
2830 : : PYMEM_FORBIDDENBYTE);
2831 [ # # ]: 0 : for (i = 0; i < SST; ++i) {
2832 : 0 : const uint8_t byte = tail[i];
2833 : 0 : fprintf(stderr, " at tail+%d: 0x%02x",
2834 : : i, byte);
2835 [ # # ]: 0 : if (byte != PYMEM_FORBIDDENBYTE)
2836 : 0 : fputs(" *** OUCH", stderr);
2837 : 0 : fputc('\n', stderr);
2838 : : }
2839 : : }
2840 : :
2841 : : #ifdef PYMEM_DEBUG_SERIALNO
2842 : : size_t serial = read_size_t(tail + SST);
2843 : : fprintf(stderr,
2844 : : " The block was made by call #%zu to debug malloc/realloc.\n",
2845 : : serial);
2846 : : #endif
2847 : :
2848 [ # # ]: 0 : if (nbytes > 0) {
2849 : 0 : i = 0;
2850 : 0 : fputs(" Data at p:", stderr);
2851 : : /* print up to 8 bytes at the start */
2852 [ # # # # ]: 0 : while (q < tail && i < 8) {
2853 : 0 : fprintf(stderr, " %02x", *q);
2854 : 0 : ++i;
2855 : 0 : ++q;
2856 : : }
2857 : : /* and up to 8 at the end */
2858 [ # # ]: 0 : if (q < tail) {
2859 [ # # ]: 0 : if (tail - q > 8) {
2860 : 0 : fputs(" ...", stderr);
2861 : 0 : q = tail - 8;
2862 : : }
2863 [ # # ]: 0 : while (q < tail) {
2864 : 0 : fprintf(stderr, " %02x", *q);
2865 : 0 : ++q;
2866 : : }
2867 : : }
2868 : 0 : fputc('\n', stderr);
2869 : : }
2870 : 0 : fputc('\n', stderr);
2871 : :
2872 : 0 : fflush(stderr);
2873 : 0 : _PyMem_DumpTraceback(fileno(stderr), p);
2874 : : }
2875 : :
2876 : :
2877 : : static size_t
2878 : 41 : printone(FILE *out, const char* msg, size_t value)
2879 : : {
2880 : : int i, k;
2881 : : char buf[100];
2882 : 41 : size_t origvalue = value;
2883 : :
2884 : 41 : fputs(msg, out);
2885 [ + + ]: 240 : for (i = (int)strlen(msg); i < 35; ++i)
2886 : 199 : fputc(' ', out);
2887 : 41 : fputc('=', out);
2888 : :
2889 : : /* Write the value with commas. */
2890 : 41 : i = 22;
2891 : 41 : buf[i--] = '\0';
2892 : 41 : buf[i--] = '\n';
2893 : 41 : k = 3;
2894 : : do {
2895 : 119 : size_t nextvalue = value / 10;
2896 : 119 : unsigned int digit = (unsigned int)(value - nextvalue * 10);
2897 : 119 : value = nextvalue;
2898 : 119 : buf[i--] = (char)(digit + '0');
2899 : 119 : --k;
2900 [ + + + + : 119 : if (k == 0 && value && i >= 0) {
+ - ]
2901 : 14 : k = 3;
2902 : 14 : buf[i--] = ',';
2903 : : }
2904 [ + + + - ]: 119 : } while (value && i >= 0);
2905 : :
2906 [ + + ]: 769 : while (i >= 0)
2907 : 728 : buf[i--] = ' ';
2908 : 41 : fputs(buf, out);
2909 : :
2910 : 41 : return origvalue;
2911 : : }
2912 : :
2913 : : void
2914 : 23 : _PyDebugAllocatorStats(FILE *out,
2915 : : const char *block_name, int num_blocks, size_t sizeof_block)
2916 : : {
2917 : : char buf1[128];
2918 : : char buf2[128];
2919 : 23 : PyOS_snprintf(buf1, sizeof(buf1),
2920 : : "%d %ss * %zd bytes each",
2921 : : num_blocks, block_name, sizeof_block);
2922 : 23 : PyOS_snprintf(buf2, sizeof(buf2),
2923 : : "%48s ", buf1);
2924 : 23 : (void)printone(out, buf2, num_blocks * sizeof_block);
2925 : 23 : }
2926 : :
2927 : :
2928 : : #ifdef WITH_PYMALLOC
2929 : :
2930 : : #ifdef Py_DEBUG
2931 : : /* Is target in the list? The list is traversed via the nextpool pointers.
2932 : : * The list may be NULL-terminated, or circular. Return 1 if target is in
2933 : : * list, else 0.
2934 : : */
2935 : : static int
2936 : : pool_is_in_list(const poolp target, poolp list)
2937 : : {
2938 : : poolp origlist = list;
2939 : : assert(target != NULL);
2940 : : if (list == NULL)
2941 : : return 0;
2942 : : do {
2943 : : if (target == list)
2944 : : return 1;
2945 : : list = list->nextpool;
2946 : : } while (list != NULL && list != origlist);
2947 : : return 0;
2948 : : }
2949 : : #endif
2950 : :
2951 : : /* Print summary info to "out" about the state of pymalloc's structures.
2952 : : * In Py_DEBUG mode, also perform some expensive internal consistency
2953 : : * checks.
2954 : : *
2955 : : * Return 0 if the memory debug hooks are not installed or no statistics was
2956 : : * written into out, return 1 otherwise.
2957 : : */
2958 : : int
2959 : 4 : _PyObject_DebugMallocStats(FILE *out)
2960 : : {
2961 [ + + ]: 4 : if (!_PyMem_PymallocEnabled()) {
2962 : 3 : return 0;
2963 : : }
2964 : :
2965 : : uint i;
2966 : 1 : const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
2967 : : /* # of pools, allocated blocks, and free blocks per class index */
2968 : : size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2969 : : size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2970 : : size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2971 : : /* total # of allocated bytes in used and full pools */
2972 : 1 : size_t allocated_bytes = 0;
2973 : : /* total # of available bytes in used pools */
2974 : 1 : size_t available_bytes = 0;
2975 : : /* # of free pools + pools not yet carved out of current arena */
2976 : 1 : uint numfreepools = 0;
2977 : : /* # of bytes for arena alignment padding */
2978 : 1 : size_t arena_alignment = 0;
2979 : : /* # of bytes in used and full pools used for pool_headers */
2980 : 1 : size_t pool_header_bytes = 0;
2981 : : /* # of bytes in used and full pools wasted due to quantization,
2982 : : * i.e. the necessarily leftover space at the ends of used and
2983 : : * full pools.
2984 : : */
2985 : 1 : size_t quantization = 0;
2986 : : /* # of arenas actually allocated. */
2987 : 1 : size_t narenas = 0;
2988 : : /* running total -- should equal narenas * ARENA_SIZE */
2989 : : size_t total;
2990 : : char buf[128];
2991 : :
2992 : 1 : fprintf(out, "Small block threshold = %d, in %u size classes.\n",
2993 : : SMALL_REQUEST_THRESHOLD, numclasses);
2994 : :
2995 [ + + ]: 33 : for (i = 0; i < numclasses; ++i)
2996 : 32 : numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
2997 : :
2998 : : /* Because full pools aren't linked to from anything, it's easiest
2999 : : * to march over all the arenas. If we're lucky, most of the memory
3000 : : * will be living in full pools -- would be a shame to miss them.
3001 : : */
3002 [ + + ]: 17 : for (i = 0; i < maxarenas; ++i) {
3003 : : uint j;
3004 : 16 : uintptr_t base = arenas[i].address;
3005 : :
3006 : : /* Skip arenas which are not allocated. */
3007 [ + + ]: 16 : if (arenas[i].address == (uintptr_t)NULL)
3008 : 14 : continue;
3009 : 2 : narenas += 1;
3010 : :
3011 : 2 : numfreepools += arenas[i].nfreepools;
3012 : :
3013 : : /* round up to pool alignment */
3014 [ + + ]: 2 : if (base & (uintptr_t)POOL_SIZE_MASK) {
3015 : 1 : arena_alignment += POOL_SIZE;
3016 : 1 : base &= ~(uintptr_t)POOL_SIZE_MASK;
3017 : 1 : base += POOL_SIZE;
3018 : : }
3019 : :
3020 : : /* visit every pool in the arena */
3021 : : assert(base <= (uintptr_t) arenas[i].pool_address);
3022 [ + + ]: 73 : for (j = 0; base < (uintptr_t) arenas[i].pool_address;
3023 : 71 : ++j, base += POOL_SIZE) {
3024 : 71 : poolp p = (poolp)base;
3025 : 71 : const uint sz = p->szidx;
3026 : : uint freeblocks;
3027 : :
3028 [ - + ]: 71 : if (p->ref.count == 0) {
3029 : : /* currently unused */
3030 : : #ifdef Py_DEBUG
3031 : : assert(pool_is_in_list(p, arenas[i].freepools));
3032 : : #endif
3033 : 0 : continue;
3034 : : }
3035 : 71 : ++numpools[sz];
3036 : 71 : numblocks[sz] += p->ref.count;
3037 : 71 : freeblocks = NUMBLOCKS(sz) - p->ref.count;
3038 : 71 : numfreeblocks[sz] += freeblocks;
3039 : : #ifdef Py_DEBUG
3040 : : if (freeblocks > 0)
3041 : : assert(pool_is_in_list(p, usedpools[sz + sz]));
3042 : : #endif
3043 : : }
3044 : : }
3045 : : assert(narenas == narenas_currently_allocated);
3046 : :
3047 : 1 : fputc('\n', out);
3048 : 1 : fputs("class size num pools blocks in use avail blocks\n"
3049 : : "----- ---- --------- ------------- ------------\n",
3050 : : out);
3051 : :
3052 [ + + ]: 33 : for (i = 0; i < numclasses; ++i) {
3053 : 32 : size_t p = numpools[i];
3054 : 32 : size_t b = numblocks[i];
3055 : 32 : size_t f = numfreeblocks[i];
3056 : 32 : uint size = INDEX2SIZE(i);
3057 [ + + ]: 32 : if (p == 0) {
3058 : : assert(b == 0 && f == 0);
3059 : 2 : continue;
3060 : : }
3061 : 30 : fprintf(out, "%5u %6u %11zu %15zu %13zu\n",
3062 : : i, size, p, b, f);
3063 : 30 : allocated_bytes += b * size;
3064 : 30 : available_bytes += f * size;
3065 : 30 : pool_header_bytes += p * POOL_OVERHEAD;
3066 : 30 : quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
3067 : : }
3068 : 1 : fputc('\n', out);
3069 : : #ifdef PYMEM_DEBUG_SERIALNO
3070 : : if (_PyMem_DebugEnabled()) {
3071 : : (void)printone(out, "# times object malloc called", serialno);
3072 : : }
3073 : : #endif
3074 : 1 : (void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
3075 : 1 : (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
3076 : 1 : (void)printone(out, "# arenas highwater mark", narenas_highwater);
3077 : 1 : (void)printone(out, "# arenas allocated current", narenas);
3078 : :
3079 : 1 : PyOS_snprintf(buf, sizeof(buf),
3080 : : "%zu arenas * %d bytes/arena",
3081 : : narenas, ARENA_SIZE);
3082 : 1 : (void)printone(out, buf, narenas * ARENA_SIZE);
3083 : :
3084 : 1 : fputc('\n', out);
3085 : :
3086 : : /* Account for what all of those arena bytes are being used for. */
3087 : 1 : total = printone(out, "# bytes in allocated blocks", allocated_bytes);
3088 : 1 : total += printone(out, "# bytes in available blocks", available_bytes);
3089 : :
3090 : 1 : PyOS_snprintf(buf, sizeof(buf),
3091 : : "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
3092 : 1 : total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
3093 : :
3094 : 1 : total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
3095 : 1 : total += printone(out, "# bytes lost to quantization", quantization);
3096 : 1 : total += printone(out, "# bytes lost to arena alignment", arena_alignment);
3097 : 1 : (void)printone(out, "Total", total);
3098 : : assert(narenas * ARENA_SIZE == total);
3099 : :
3100 : : #if WITH_PYMALLOC_RADIX_TREE
3101 : 1 : fputs("\narena map counts\n", out);
3102 : : #ifdef USE_INTERIOR_NODES
3103 : 1 : (void)printone(out, "# arena map mid nodes", arena_map_mid_count);
3104 : 1 : (void)printone(out, "# arena map bot nodes", arena_map_bot_count);
3105 : 1 : fputc('\n', out);
3106 : : #endif
3107 : 1 : total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root));
3108 : : #ifdef USE_INTERIOR_NODES
3109 : 1 : total += printone(out, "# bytes lost to arena map mid",
3110 : : sizeof(arena_map_mid_t) * arena_map_mid_count);
3111 : 1 : total += printone(out, "# bytes lost to arena map bot",
3112 : : sizeof(arena_map_bot_t) * arena_map_bot_count);
3113 : 1 : (void)printone(out, "Total", total);
3114 : : #endif
3115 : : #endif
3116 : :
3117 : 1 : return 1;
3118 : : }
3119 : :
3120 : : #endif /* #ifdef WITH_PYMALLOC */
|